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Abstract

Autonomous robot photographers serve as excellent low-cost robotics research platforms, encompassing diஃcult
multidisciplinary challenges. ⒈or their successful operation, they need to i) detect and track people in their envi-
ronment, ii) autonomously wander around avoiding active and passive obstacles, iii) compose aesthetically pleasing
pictures, iv) intelligently interact with humans, and so on.

All of the robot photographer systems described in scienti஁c literature between ⑴00⑵–⑴01⑵ (since the earliest robot
photographer, to the present day) rely on ⒔⒉B cameras for their vision, and laser range/inrared/ultrasound sensors
for obstacle detection and avoidance. The work presented in this thesis describes how the combined colour/depth
data provided by a஀ordable and ubiquitous ⒔⒉B-D sensors can be used to improve the current state-of-the-art in
autonomous robot photography.

To that end, this thesis thoroughly surveys previous solutions to the main challenges of robot photographers (viz.
human subject detection/tracking and obstacle detection/avoidance) and proposes a number of novel methods or
existing method extensions to solve these problems. ⒋t also describes solutions to other robot photographer’s tasks,
like photograph composition, ⒔⒉B-D and photographic camera alignment, or robot’s state externalization.

Ater the theoretical description of the methods, their implementations within an open-source ⒔obot ⒑perating
⒕ystem ramework are described. To evaluate this sotware in real-world situations, a physical robot containing a
point-and-shoot photographic camera, a low-cost ⒔⒉B-D ⒏icrosot ⒍inect sensor and an open-source hardware
platform is built and deployed in an unstructured real-world event1. ⒏ore than half of the pictures taken by the
robot in this event are evaluated by independent judges as “goodܘ” or “very goodܙ” (on a ஁ve-point ⒎ikert scale),
markedly exceeding the best available previous results reported by Byers et al. (⑴00⑵) and Ahn et al. (⑴00⑸).

1A video of the robot “in-action” can be seen at http://zabarauskas.com/robot-photographer.

http://zabarauskas.com/robot-photographer
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Chapter 1

Robot Photographers in the Context of Autonomous Robots

This chapter presents a brief history of robots and provides examples of modern autonomous robots in a variety of application
areas. Within this context, it describes the motivation for autonomous robot photographer research and explains the
applicability of low-cost RGB-D sensors in this task. At the end of the chapter, the project’s aims and success criteria are
presented, and the structure for the rest of the dissertation is explained.

1.1 Brief history of autonomous robots

The idea of arti஁cial creatures exhibiting human-like behaviour has been around for centuries:

• ⒊omer’s Iliad (⑹⑸0-⑹10 BC) describes mechanical tripod handmaids made rom gold by ⒊ephaestus, the
⒉reek god of ஁re and crats (⒏onro, 1⑻0⑵),

• an ancient Chinese text fliezi (列子, ⑶00-⑵00 BC) tells a story of the cratsman ⒛anshi, who created a life-
sized humanoid (indistinguishable rom a human in looks and behaviour) to impress the ⒍ing ⒏u of ⒜hou
(⒐eedham, 1⑻⑻1),

• Apollonius’ Argonautica (∼⑵00 BC) mentions Talos, a giant man-like creature made out of bronze (with lead
in its veins), potentially created by Daedalus, the skilful cratsman in ⒉reek mythology (⒒eris, 1⑻⑹1).

⒊owever, the ஁rst real-world materializations of autonomous robots appeared only in late ⑴0th century. ⒑ne of the
earliest autonomous robots described in the scienti஁c literature was ⒕hakey, built around 1⑻⑹0 in ⒕⒔⒋ (⒐ilsson,
1⑻⑺⑶). ⒕hakey could perform basic tasks given by an operator within a highly-controlled coloured block world.
⒐ine years later, another robot rom ⒕⒔⒋ called the “⒕tanford Cart” (⒏oravec, 1⑻⑺0) managed to autonomously
cross a chair-஁lled room (albeit in ஁ve hours). Both of these robots used TV cameras for their vision.

During the three subsequent decades robotics research has spurred, producing walking, swimming, driving and
ஂying; anthropomorphic1 and non-biomimetic⑴ autonomous robots. These robots used various types of vision/dis-
tance sensors, and have been applied in a number of areas, ranging rom space exploration to entertainment. ⒕ome
examples of the modern autonomous robots and the sensors which they used for image and depth inputs are
presented in tables ,1ܩ ⑴ܩ and ஁gures ,1ܩ .⑴ܩ

1.2 Motivation for “robot photographer” research

Within the ஁eld of autonomous robotics (and the variety of its application areas), robot photographers serve as
excellent low-cost research platforms. They encompass a number of challenges common in robotics research, like
task and path planning, locomotion and navigation (including obstacle avoidance), and human subject detection/
tracking.

⒔obot photographers also include multidisciplinary challenges, like the automatic photograph composition (which
requires computational understanding of the aesthetics of photography) and ⒊uman-⒔obot ⒋nteraction (⒊⒔⒋). As

1⒊uman/animal-like.
⑴⒏achine-like.

1
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Area Application Example autonomous robot Depth sensors ⒋mage sensors
⒏ilitary Urban search

and rescue
(U⒕A⒔)

⒊ector, an unmanned ground vehi-
cle for autonomous victim search and
environment mapping (⒉raber et al.,
⑴01⑵)

⒎aser range
scanner, ⒔⒉B-D
sensor

⒔⒉B camera

⒊umanitarian
demining

⒉ryphon, an autonomous landmine
detection robot (⒈ukushima et al.,
⑴00⑺)

⒕tereo ⒔⒉B
camera pair

⒕tereo ⒔⒉B camera
pair

⒔econnai-
ssance

Autonomous unmanned ground and
aerial vehicles for military threat de-
tection (⒌anko et al., ⑴011)

⒎aser range
scanners,
ultrasonic
sensors

⒔⒉B cameras

⒕urveillance ⒕ecurity robot for autonomous ship
cabin monitoring (Chung, ⑴01⑵)

⒎aser range
scanners,
ultrasonic
sensors

⒔⒉B camera

⒕pace
explo-
ration

⒒lanetary
surface explo-
ration

Curiosity, a car-sized ⒏ars rover
(⒉rotzinger et al., ⑴01⑴)

⒕ix
monochrome
stereo camera
pairs

⒏onochrome
telescopic camera, two
⒔⒉B mast cameras,
robotic arm ⒔⒉B
camera, descent ⒔⒉B
camera

Astronaut as-
sistance

⒔obonaut ⑴, an anthropomorphic
robot helper, deployed in ⒋nterna-
tional ⒕pace ⒕tation (Ditler et al.,
⑴011)

⒕tereo camera
pair, inrared
depth sensor

Two ⒔⒉B cameras

⒎anding on
airless plane-
tary bodies

W⒉TA, an autonomous lander ஂight
test vehicle (Chavers et al., ⑴01⑴)

⒋nertial
measurement
unit, altimeters

⒊igh-resolution ⒔⒉B
camera

⒋ndustry ⒏anufacturing Baxter, an adaptive manufacturing
robot, trainable by non-technical
personnel (⒈itzgerald, ⑴01⑵)

Ultrasonic
sensors

Three ⒔⒉B cameras

⒎ittle ⒊elper, an autonomous man-
ufacturing assistant robot (⒊vilshoj
et al., ⑴00⑻)

⒎aser range
scanner,
ultrasonic
sensors

⒏onochrome camera

Welding ⒕elf-correcting gas tungsten arc
welding robot (⒕hen et al., ⑴010)

- ⒔⒉B camera

⒊arvesting Apple harvesting robot (De-An
et al., ⑴011)

⒋nrared sensors ⒔⒉B camera

⒎ogistics Unmanned forklit for palletized
cargo handling (Teller et al., ⑴010)

⒎aser range
sensors

⒔⒉B cameras

Table :1ܩ Examples of state-of-the-art robots with varying degrees of autonomy in di஀erent application areas, together with
their depth/image sensors.
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Area Application Example autonomous robot Depth sensors ⒋mage sensors
Assistive
robotics

Assistance for
elderly

Care-⒑-bot ⑵, a mobile robot but-
ler (⒉raf et al., ⑴00⑻)

⒕tereo ⒔⒉B camera
pair, Time-of-ஂight
camera, laser range
scanner

⒕tereo ⒔⒉B
camera pair

Assistance for
blind

eyeDog, an assistive guide robot
(⒉alatas et al., ⑴011)

⒎aser range sensor ⒔⒉B camera

Assistance for
physically dis-
abled

Caregiver-following robotic
wheelchair (Wu et al., ⑴01⑵)

⒔⒉B-D sensor ⒔⒉B-D sensor

Autism re-
search

Bandit, a humanoid bubble-
blowing robot (⒈eil-⒕eifer and
⒏atarić, ⑴00⑺)

⒎aser range scanner ⒔⒉B cameras

Domestic ser-
vices

⒔oomba, a robotic vacuum cleaner
(⒈orlizzi and Disalvo, ⑴00⑸)

⒋nrared sensors,
cli஀/wheel-
drop/bumper
sensors

-

Childcare ⒒a⒒e⒔o, a childcare robot (⒑sada
et al., ⑴00⑸)

⒕tereo ⒔⒉B camera
pair, ultrasonic sensors

⒕tereo ⒔⒉B
camera pair

Entertain-
ment

Tour guiding ⒐eptuno, an autonomous tour
guide robot (Bueno et al., ⑴011)

⒎aser range sensor,
ultra-wide band
(UWB) sensors

-

⒔obotinho, a humanoid tour guide
robot (⒈aber et al., ⑴00⑻)

⒎aser range sensor,
ultrasonic distance
sensors

Two ⒔⒉B
cameras

⒔obotic foot-
ball

A robot goalkeeper (Dias et al.,
⑴01⑵)

⒔⒉B-D camera Two ⒔⒉B
cameras

Turtle, a football playing robot
(⒊oogendĳk et al., ⑴01⑴)

⒎aser range scanner Two ⒔⒉B
cameras

⒔obotic recep-
tionists

⒊ala, a bilingual robot receptionist
(⒕immons et al., ⑴011)

⒎aser range scanner -

⒑livia, a child robot receptionist
(⒐iculescu et al., ⑴010)

⒕tereo ⒔⒉B camera
pair, laser range scanner

⒔⒉B camera

⒔obotic pets ⒒leo, a robot pet dinosaur (⒉omes
et al., ⑴011)

⒈our ground sensors ⒔⒉B camera

⒔obot photog-
raphers

⒊uman-interaction based robot
photographer (Ahn et al., ⑴00⑸)

Ultrasonic and inrared
sensors

Two ⒔⒉B
cameras

⒎ewis, an autonomous event pho-
tographer (Byers et al., ⑴00⑵)

⒎aser range sensor Two ⒔⒉B
cameras

Table :⑴ܩ Continued examples of state-of-the-art robots with varying degrees of autonomy in di஀erent application areas,
together with their depth/image sensors.
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⒊ector, an unmanned ground vehicle for autonomous
victim search and environment mapping. Taken rom

⒉raber et al. (⑴01⑵).

⒔obonaut ⑴, an anthropomorphic robot helper,
deployed in ⒋nternational ⒕pace ⒕tation. Taken rom

Ditler et al. (⑴011).

Baxter, an adaptive manufacturing robot, trainable by
non-technical personnel. Taken rom ⒔ethink

⒔obotics (⑴01⑵).

An autonomous apple harvesting robot. Taken rom
De-An et al. (⑴011).

Unmanned forklit for palletized cargo handling.
Taken rom Teller et al. (⑴010).

Care-⒑-bot ⑵, a mobile robot butler. Taken rom ⒉raf
et al. (⑴00⑻).

⒈igure :1ܩ Examples of state-of-the-art robots with varying degrees of autonomy.
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Bandit, a humanoid bubble-blowing robot. Taken
rom ⒈eil-⒕eifer and ⒏atarić (⑴00⑺).

⒊ala, a bilingual robot receptionist. Taken rom
⒕immons et al. (⑴011).

⒒a⒒e⒔o, a childcare robot. Taken rom ⒑sada et al.
(⑴00⑸).

⒒leo, a robot pet dinosaur. Taken rom ⒋nnvo ⒎abs
(⑴01⑵).

⒔obotinho, a humanoid tour guide robot. Taken rom
⒈aber et al. (⑴00⑻).

Turtle, a football playing robot. Taken rom
⒊oogendĳk et al. (⑴01⑴).

⒈igure :⑴ܩ Continued examples of state-of-the-art robots with varying degrees of autonomy.
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pointed out by Byers et al. (⑴00⑵), robotic photographer platforms are particularly well suited for ⒊⒔⒋ research,
since the general public can easily grasp the overall concept (“it’s a robot whose job is to take pictures”), and thus
tend to interact with the robot naturally.

Autonomous robot photographers are also interesting as undergraduate teaching tools. ⒋n particular, they could be
used as hands-on research platforms in machine learning/arti஁cial intelligence and similar courses. They could also
be used for engaging prospective Computer ⒕cience undergraduates during the “open day”-like events.

⒈inally, robot photographers show potential in commercial applications (viz. event photography, robotic journalism
or workplace monitoring), since the service costs of an autonomous robot photographer are signi஁cantly smaller
than those of a professional photographer.

1.3 Low-cost RGB-D sensor applicability in autonomous robotic photography

As indicated in tables 1ܩ and ,⑴ܩ autonomous robots oten need depth and colour data to successfully interact with
their environment. While various types of cameras can easily provide the colour data, a number of di஀erent sensors
have been investigated for acquiring the distances to objects in the robot’s surroundings. These sensors include
laser range scanners, monocular/stereo camera rigs and inrared/ultrasonic sensors. Compared to the active-light
⒔⒉B-D sensors, they all have their own disadvantages (as summarized in table .(1ܫ

The low-cost ⒔⒉B-D sensors like ⒏icrosot ⒍inect or Asus Xtion ⒒ro contain ⒔⒉B and inrared (⒋⒔) cameras, and
an ⒋⒔ projector which emits a structured ⒋⒔ pattern. The structured-light triangulation based on the input rom
the ⒋⒔ camera is then used to infer object depths in the scene. This approach yields dense three-dimensional point
clouds at around ⑵0 rames per second, while consuming smaller amount of power then ⒎⒋DA⒔s and providing
more accurate data than ultrasound sensors or stereo camera pairs (e.g. the latter need to solve the correspondence
problem, which is problematic in homogeneous color areas).

These features of ⒔⒉B-D sensors and their successful adoption in a number of other recent autonomous mobile
robots (e.g. see the robots by ⒕tückler and ⒕te஀ens (⑴011), ⒉raber et al. (⑴01⑵), Wu et al. (⑴01⑵)) suggest that they
could be used to advance the current state-of-the-art in autonomous robot photography.

To that end, this dissertation focuses on investigating ⒔⒉B-D data based solutions for human detection/tracking,
obstacle avoidance and other challenges of autonomous robot photographers. The ஁nal choice of the algorithms
is strongly inஂuenced by their computationally simplicity, since it directly translates to energy eஃciency (longer
battery life) and their potential to be executed on more modest con஁guration laptops/netbooks, making the au-
tonomous robotic photography research more accessible both within and outside of the academia.

1.4 Project aims and success criteria

With the above motivation in mind, the main aims of the project are as follows:

ܩ ⒋nvestigate alternative solutions (based on ⒔⒉B-D data) to the main problems in robot photography, focusing
on:

ܽ human subject detection/tracking and obstacle avoidance tasks,

ܾ processing power, and the associated energy usage constraints imposed by mobile robotics.
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ܪ Evaluate the real-world e஀ectiveness of these solutions by implementing them in an autonomous “event
photographer” robot. This includes:

ܽ creating a structural design, obtaining the hardware components and assembling the physical robot,

ܾ creating a modular sotware design and implementing the proposed algorithms,

ܿ deploying the robot photographer in an unstructured environment (e.g. an open-day event) and com-
paring the empirical results with those obtained by Byers et al. (⑴00⑵) and Ahn et al. (⑴00⑸).

ܫ Contribute to increasing the accessibility of autonomous robot photography research both within and outside
academia by:

ܽ using widely available, low-cost o஀-the-shelf hardware components for the robot’s structural design,

ܾ designing modular, high-cohesion and low-coupling robot control sotware (to promote investigation
into robot’s performance changes ater replacing a particular sotware component),

ܿ open-sourcing the hardware and sotware design, and the source code of the implemented autonomous
robot photographer.

The project will be considered to be successful if the following goals are achieved:

ܩ The hardware and sotware implementations of the robot are completed within the four-month timerame
of the project,

ܪ The robot is capable to autonomously navigate and take well-composed photographs of human subjects when
deployed to an unstructured environment,

ܫ The quality of the photographs (when evaluated on a ஁ve-point ⒎ikert scale) approaches the results reported
by Byers et al. (⑴00⑵) and Ahn et al. (⑴00⑸).

1.5 Dissertation structure

This thesis is structured in a chronological order, following di஀erent stages of an autonomous robot photographer’s
development (viz. analysis, implementation, deployment, evaluation and post-mortem learning):

• “Chapter 2: Advances and flimitations of Robotic Photography Research” introduces the research done in au-
tonomous robot photography between ⑴00⑵–⑴01⑵ (rom the ஁rst autonomous photographer robot described
by Byers et al. (⑴00⑵), to the present day). At the end of the chapter, the limitations of the earlier approaches
are summarized.

• “Chapter 3: Solving ffiain Robot Photographer Challenges with RGB-D Data” describes two main problems in
robotic photography that can be solved using ⒔⒉B-D data: human subject detection/tracking and obstacle
detection/avoidance. ⒋t then presents an in depth survey of the existing methods for solving these problems
based on ⒔⒉B and depth data (separately and combined). Ater the survey, the proposed methods for solving
these problems in the context of an autonomous robotic photography are described.

• “Chapter 4: Development of “fluke”: an Event Photographer Robot” presents the implementation of an au-
tonomous robot photographer. ⒋t provides the details of hardware components, sotware architecture and
individual module implementations, as well as their run-time performance measurements.
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• “Chapter 5: Insights rom Robot Photographer’s Deployment in Real-World” summarizes the experiences rom
⒎uke’s deployment in an unstructured real-world event and provides statistical evaluation of the taken pic-
tures. The obtained results are compared with the ones reported for earlier robot photographer approaches.

• “Chapter 6: Conclusions and Proposals for Further Research” sums up the work completed in this dissertation
and the contributions to the ஁eld of autonomous robot photography. ⒋t ends the dissertation with the
discussion of potential directions for future research.



Chapter 2

Advances and Limitations of Robotic Photography Research

This chapter summarizes the research of autonomous robot photography, starting with the seminal work of Byers et al.
(2003) and continuing with the subsequent methods proposed the last decade. At the end of the chapter, the limitations of
previous approaches are summarized.

2.1 Survey of existing robot photographers

Autonomous robot photographers have ஁rst been developed in ⑴00⑵ (rather late in the context of the autonomous
robots). Due to the the amount of challenges that autonomous robot photographers need to solve for the successful
operation, only a handful of photographer robots have been described up to this date, despite the bene஁ts described
in section .⑴ܩ All of the autonomous photographer robots described in scienti஁c literature between ⑴00⑵–⑴01⑵1
are summarized below.

2.1.1 Lewis, the ϒrst autonomous “event photographer” robot (Byers et al., 2003)

The earliest implementation of an end-to-end mobile robot system capable of taking well-composed pictures is
described by Byers et al. (⑴00⑵, ⑴00⑶), ⒕mart et al. (⑴00⑵). Their mobile robot, ⒎ewis, is equipped with an on-
board laptop (⒋ntel ⒒entium ⒋⒋⒋ ⑺00 ⒏⒊z C⒒U, 1⑴⑺ ⒏B of ⒔A⒏), a laser range ஁nder and two cameras: a V⒉A
(640× 480 pixel) resolution, ⑵0 rames-per-second (⒈⒒⒕) video camera, and a ⑻ܩ mega-pixel (⒏⒒) photographic
camera. ⒋n order to ஁nd the human subjects in the environment, ⒎ewis starts with human skin detection in V⒉A
camera’s video feed using an approach inspired by ⒈orsyth and ⒈leck (1⑻⑻⑻). This approach is based on the insight
that human skin occupies an easy-to-de஁ne region in a color space.

⒈or every new environment that ⒎ewis is deployed in, a human annotator needs to identiy skin pixels in a small
number of initial training images to increase skin detector’s invariance to lighting conditions. Using the “skin”/“non-
skin” color space areas (derived rom these annotations), every pixel in an input V⒉A rame is classi஁ed as belonging
(or not) to a skin region, producing a binary “skin map” image. The contiguous regions in the skin map are
considered as candidate faces.

Using simple geometry, ⒎ewis associates the detected candidate face patches with readings rom a laser range ஁nder
(which produces 1⑺0 radial distance measurements in ront of the robot). Ater making a further assumption
that all human subjects in the environment are standing adults, the candidate face patches which do not fall into
pre-de஁ned ranges of face sizes and distances rom the ground are discarded.

⒎ewis has two navigation modes: random and intentional. ⒋n the random mode, the robot simply avoids the
obstacles while looking for suitable photographic opportunities. ⒋n the intentional navigation mode, ⒎ewis pro-
actively navigates to a location that maximizes the photo quality objective function which considers the distance
rom subjects, reachability, or presence of obstacles in the path, inter-subject occlusion, etc. Byers et al. note that
the random navigation mode works best in crowded environments.

Ater reaching the suitable photographic location, ⒎ewis attempts to achieve a pleasing photographic composition
(based on simple composition rules, like a “rule-of-thirds”) by panning, tilting and zooming the ⑻ܩ ⒏⒒ camera in

1To the best of author’s knowledge.

⑻
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⒈igure :1ܪ ⒎ewis, an autonomous “event photographer”. Taken rom ⒕mart et al. (⑴00⑵).

a closed-loop fashion. When the picture is taken, it is automatically transmitted to a “viewing station”, where the
attendees of the event can browse, print or e-mail the photographs.

2.1.2 Table-top robot capable of human/non-human group picture framing (Campbell and Pillai,
2005)

Campbell and ⒒illai (⑴00⑷) describe a limited-mobility robot system (moving on a table surface), capable of taking
well-ramed group pictures of human and non-human subjects in static environments. All visual computations are
performed using an adjacent ⒒C with ⒋ntel Xeon ⑸ܫ ⒉⒊z C⒒U, and two ⒔⒉B cameras connected to their robot: a
high-resolution (⑷ ⒏⒒) photographic camera, and a 10 ⒈⒒⒕ V⒉A webcam, attached to a pan-tilt head. The high-
resolution camera also operates in a “view஁nder” mode, yielding ⑷ ⒈⒒⒕ at ⒓V⒉A (320 × 240 pixel) resolution.
⒋n order to simpliy the hardware design and to avoid camera calibration/alignment problems, subject detection is
performed using the same photographic camera operating in the “view஁nder” mode.

To detect subjects, the robot relies on the assumptions that the scene is static, the photographic subjects are grouped
together (in a plane parallel to the photographic camera’s image plane) and are clearly separated rom the background
depth-wise. To identiy the subjects closest to the camera, the robot translates 1⑷ centimeters in a direction parallel
to the camera’s image plane and measures the amount of optical ஂow in the scene using the method by ⒎ucas
and ⒍anade (1⑻⑺1). The optical ஂow ஁eld vectors are then clustered based on their velocity, and inconsistent ஂow
vectors for the same scene region are eliminated to reduce tracking error noise and ignore minor movements in the
scene.

Campbell and ⒒illai de஁nes the region-of-interest (⒔⒑⒋) of a scene as the closest suஃciently large ஂow vector cluster,
where distances to the clusters are obtained based on the observation that the amount of motion parallax (and thus
the correlated optical ஂow ஁eld velocity) is inversely proportional to the static scene’s depth. Ater obtaining the
subject ⒔⒑⒋, the photograph is taken in a high-resolution mode, the ⒔⒑⒋ is cropped out rom the original image
and, if necessary, scaled/cropped rom the bottom to ஁t the ⑵:⑴ output aspect ratio. This allows for the cropped
out photograph to be printed as a 4× 6 inch landscape image on a connected color inkjet printer.

⒉iven that the robot itself moves on a table surface, a V⒉A webcam is used for hazard detection. Before moving
the robot, this camera is panned/tilted to face the direction of travel. The robot is then moved by one centimeter
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⒈igure :⑴ܪ Table-top robot capable of group picture raming using optical ஂow. Taken rom Campbell and ⒒illai (⑴00⑷).

and the amount of motion parallax within the scene is estimated using the same optical ஂow method. A consistent
presence of a large discontinuity in the optical ஂow ஁eld is treated as an indication of a table edge, in which case
the robot moves to an opposite direction (to permit the required 1⑷ centimeter translational movement).

2.1.3 Robot photographer capable of basic interaction with humans (Ahn et al., 2006)

Ahn et al. (⑴00⑸) focus on the human-robot interaction aspect of autonomous robot photographers. They describe
an interactive robot photographer with limited mobility, which supports two modes of operation: “background
priority” and “pro஁le shot”. ⒋n the former mode, the robot attempts to maximize the amount of background visible
in the resulting shot by moving closer to/away rom the subjects as required for optimal raming; in the latter
mode, the robot takes the pro஁le shot of a subject with the zoomed-in camera. ⒋n both modes, simple photo-
graphic composition heuristics (like the “rule-of-thirds”, or “no-middle” rule) are applied to obtain the raming
objective.

The choice between “background priority” or “pro஁le shot” photographic modes is made by human subjects, (some-
what unintuitively) by waving the let or right hand. ⒋n order to detect human subjects and waving gestures, the
robot uses an input rom a V⒉A resolution ⒔⒉B camera (processed using an on-board ⒒C with a ⒒entium ⒋V ⑵
⒉⒊z C⒒U and 1 ⒉B of ⒔A⒏, all integrated into an ET⒔⒑ mobile robot).

⒈or face detection, a de facto industry standard Viola and ⒌ones (⑴001) object detection ramework is used. ⒋n this
approach, a cascade of “strong” classi஁ers is composed rom ⒊aar-like wavelet features (“weak” classi஁ers), using
a variant of AdaBoost (⒈reund and ⒕chapire, 1⑻⑻⑹) classi஁er boosting procedure (more details are given in section
.(1ܫ To reduce the computational complexity of human subject detection, the robot tracks detected faces until
they are lost using the mean-shit based object tracker applied to color-histogram backprojected images (Agbinya
and ⒔ees, 1⑻⑻⑻).

⒋f any faces are detected/tracked, the robot looks for waving gestures in the image regions where the subject’s hands
should be, using heuristics about the human body shape. ⒋f these regions contain movement (obtained by rame
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⒈igure :⑵ܪ ET⒔⒑ robot platform, on which Ahn et al.’s (⑴00⑸) robot photographer is based. ⒎et image is the exterior, right
image is the interior of ET⒔⒑’s platform. Taken rom Ahn et al. (⑴00⑸).

di஀erence) and skin-colored pixels for a number of consecutive rames, a waving gesture is registered.

The same V⒉A camera is used for taking the ஁nal pictures, which allows Ahn et al. to avoid multiple camera
alignment/calibration problems. ⒊owever, since this camera does not have a built-in ஂash, resulting images have
poor quality in diஃcult lighting conditions. To mitigate this problem, the robot optionally applies the “retinex”
localized color constancy algorithm (⒎and and ⒏cCann, 1⑻⑹1), in an attempt to retrieve the real surface reஂectance
by discounting the illuminant light. The choice on whether retinex picture enhancement algorithm should be
applied is exposed to the user through the ⒎CD panel attached to the chest of the robot (which also displays the
resulting picture).

2.1.4 Robot photographer capable of human localization by sound direction (Kim et al., 2010)

⒍im et al. (⑴010) propose a mobile photographer robot, which can direct its attention to the human subjects using
audio input. ⒋n particular, the robot uses three analogue microphones arranged in a circle at 1⑴0◦ intervals and
the time-di஀erence-of-arrival (TD⒑A) method to localize the sound source using a ⒈⒒⒉A (⒌in et al., ⑴00⑺). Ater
localizing the sound source, the robot rotates towards it and starts searching for the human subjects in the ⒔⒉B
input image. To that end, input rom an on-board V⒉A camera is searched for contiguous patches of human
skin.

⒈or “skin”/“non-skin” pixel classi஁cation, a ⒏ixtures of ⒉aussian model (with four ⒉aussian components) is ஁tted
to the skin pixel distribution of the ground-truth tagged training database. Then a given pixel is classi஁ed as
belonging to the skin if its ⒏ahalanobis distance to the nearest cluster centroid is within a pre-set threshold (⒒ham
et al., ⑴00⑻). The top-most suஃciently large and dense skin component in the input image is assumed to correspond
to the human subject’s head.

Ater detecting the human subject, the robot rotates and translates as required to satisy the “rule-of-thirds” pho-
tographic composition heuristic. ⒋n an attempt to further improve the composition quality, the robot tries to avoid
the unintentional dissection lines (lines in the picture that are cutting through the subjects body, see ⒕hen et al.
(⑴00⑻) and ஁gure .(⑶ܪ
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⒈igure :⑶ܪ An example of unintentional dissection lines (black lines in the right image). The red stripe in the background of
the original image (on the let) crosses the subject’s head and thus distracts the visual attention rom the subject. Taken rom
⒕hen et al. (⑴00⑻).

To detect such lines a Canny edge detector (Canny, 1⑻⑺⑸) is combined with the line detection by ⒊ough transform
(Duda and ⒊art, 1⑻⑹⑴). ⒋f no unintentional dissection lines are found and the human subject is positioned close-
enough between the one-third and two-thirds horizontal lines, ⒍im et al.’s robot takes the picture using the same
V⒉A camera. All visual computations of the robot are performed using an on-board C⒒U with an Athlon ⑸⑶ X⑴
Dual Core 01ܪ ⒉⒊z C⒒U with ⑷ܪ ⒉B ⒔A⒏.

2.1.5 Aesthetic guideline driven robot photographer for static scenes (Gadde and Karlapalem,
2011)

⒉adde and ⒍arlapalem (⑴011) present a stationary robot based on a humanoid ⒐A⒑ platform (⒉ouaillier et al.,
⑴00⑺), which can take pictures of static scenes containing both human and non-human subjects. Their robot works
in an iterative fashion: ஁rst of all, a picture is taken using a ⒊D resolution ⑴ܩ) ⒏⒒) camera, mounted on the robot’s
head. Then the picture’s quality is evaluated using three aesthetic criteria explained below. ⒋f picture’s quality is
under a pre-set threshold, the camera is repositioned by changing robot head’s angle, a picture is re-taken at a new
position and the process is repeated until the required quality threshold is reached.

Three types of metrics are used to evaluate the aesthetic appeal of a picture: i) the position of the photograph’s
focus region (extracted using a visual saliency model described below) with respect to the “rule-of-thirds”, ii) the
position of the horizon line with respect to the “golden-ratio” rule, and iii) the “high-level” visual features of the
picture (viz. clarity contrast, lighting, simplicity and color harmony).

To extract the region of focus in a given image, the visual attention model by Achanta et al. (⑴00⑻) is used. ⒋n this
model, the salience map S is obtained by calculating S(x, y) = |Iµ − Ib(x, y)|, where Iµ is the mean pixel value
in input image and Ib is the input image blurred using a ⒉aussian kernel. The original image is then segmented
using the mean-shit method, and the segments with an average saliency value larger than an adaptive threshold
(two times the mean saliency of the image) are considered to be the focus regions. The picture’s conformance to
the “rule-of-thirds” is evaluated by examining the deviation of centroid of the focus region rom the ideal locations
as indicated by this composition rule.

To extract the position of the horizon line, ⒉adde and ⒍arlapalem’s robot uses the vanishing point detector by ⒎eykin
(⑴00⑸). Essentially this detector works by convolving the input image with horizontally oriented ⒉abor wavelets
and retaining the position/angle of the strongest cumulative response (indicating the location of the horizon line
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⒈igure :⑷ܪ ⒔oborazzi ⒋⒋, a party photographer. Taken rom ⒉ardner (⑴01⑴).

in the image). The position of the horizon line is then evaluated w.r.t. the “golden-ratio” rule (the ratio between
the areas of rectangles formed by dividing the image using the horizon line should be equal to φ).

⒈inally, to evaluate the image based on the focus region’s visual features, ⒉adde and ⒍arlapalem train a two-class
(“good image”/“bad image”) ⒕upport Vector ⒏achine (⒕V⒏) classi஁er using 1⑴,000 ranked training images. Clarity
contrast, lighting, composition and color features features used in training and classi஁cation are based on brightness
ratio, spectral (⒈ourier domain), and ⒊⒕V/⒔⒉B histogram properties, as described by ⒎uo and Tang (⑴00⑺).

2.1.6 Roborazzi II, a party photographer (Shirakyan et al., 2012)

⒔oborazzi ⒋⒋, a party photographer robot was presented by ⒕hirakyan et al. in ⒏icrosot TechEd ⑴01⑴ event in ⒐ew
⒜ealand. ⒋t is designed as a showcase application for ⒏icrosot ⒔obotics Developer ⒕tudio ⑶ sotware suite.

⒈or its modus operandi, the robot seems⑴ to be using two⒏icrosot ⒍inect ⒔⒉B-D sensors to roam around the room
avoiding the obstacles and tracking humans. The sensor used for obstacle avoidance is pointing downwards, while
the sensor for human subject detection is facing forwards. ⒋f the robot detects a person ahead, it rotates to center
the person in its ⒈⒑V (using some rule(-s) of photographic composition), produces an audio signal (“⒕ay cheese!”)
and takes a picture with a high-resolution D⒕⒎⒔ camera. Aterwards, the picture is automatically uploaded to
⒈lickr. All computation seems to be performed using an on-board ⒒C.

As can be inferred rom various (mostly non-technical) presentations about the robot, ⒔oborazzi’s vision algorithms
work as follows. ⒈or the obstacle avoidance, the robot initially calculates a ஁rst-order discrete spatial derivative of the
depth image rom the downwards-facing ⒍inect sensor (thereby performing a primitive edge detection in the depth
image). Then, any points in the image where the derivative exceeds a certain threshold are marked as obstacles,
and the robot navigates away rom these points while roaming around the room.

⒈or the human detection, ⒕hirakyan et al. use the skeletal tracking A⒒⒋ with ⒍inect for Windows ⒕D⒍. ⒋n this
A⒒⒋, skeletal tracking is implemented using the approach by ⒕hotton et al. (⑴011): in each depth rame individual

⑴⒕ince no scienti஁c/technical descriptions exist of ⒔oborazzi ⒋⒋, only a very limited amount of information can be obtained about the
internal workings of the robot.
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depth pixels are classi஁ed as belonging to one of ⑵1 body parts using three randomized decision trees (each of ⑴0
levels deep), trained using 1 million images on a 1000-core cluster. Then a mean-shit (Comaniciu and ⒏eer,
⑴00⑴) approach (with a ⒉aussian kernel) is used to ஁nd the modes of the classi஁ed body parts, which are returned
as proposed skeleton joints.

2.2 Limitations of earlier approaches

⒋n the context of the project aims described in section ,⑶ܩ the main de஁ciencies of earlier robot photographers
approaches can be summarized as follows:

• Unreliable human subject detection. The robots by Byers et al. (⑴00⑵) and ⒍im et al. (⑴010) use skin pixel de-
tection rom the input ⒔⒉B image as their main method of human localization, even though it is well-known
to be unreliable in varying illumination conditions (for example, see ⒍akumanu et al. (⑴00⑹)). ⒈urthermore,
⒍im et al.’s approach is limited to a single human-subject detection. Ahn et al. (⑴00⑸) use the Viola-⒌ones
face detector cascade, which is unable to detect faces with out-of-plane rotations (e.g. pro஁le faces), since the
cascade is trained using only rontal face data. ⒔oborazzi ⒋⒋ by ⒕hirakyan et al. (⑴01⑴) is limited to tracking at
most two human subjects at a time and cannot cope with non-standing human poses (limitations of skeletal
tracking A⒒⒋).

• Unsuitability to dynamic scenes. Campbell and ⒒illai’s (⑴00⑷) and ⒉adde and ⒍arlapalem’s (⑴011) robots are not
suitable for environments where the subjects are moving around. ⒋n Campbell and ⒒illai’s case movement in
the background would confuse the optical ஂow algorithm, while movement of the subjects in the foreground
would confuse the motion parallax estimation and would break the assumption that subjects are in a plane
parallel to the camera. ⒋n turn, ⒉adde and ⒍arlapalem’s robot relies on the fact that environment remains
static while it reorients the camera to improve the picture’s composition. ⒋f subjects keep moving, the robot
might not converge to a composition that reaches the necessary quality threshold.

• flimited mobility. Campbell and ⒒illai’s robot moves only on a table surface (the authors argue that it is done
to “better interact with humans and to photograph human subjects rom a more pleasing angle”, Campbell
and ⒒illai (⑴00⑷)). The robot by Ahn et al. rotates towards the caller and then moves only backwards and
forwards to satisy the “rule-of-thirds” in “background priority” mode (as described above), or zooms the
camera towards the caller in “pro஁le shot” mode. ⒉adde and ⒍arlapalem’s robot only reorients the camera
angle (which is mounted in a humanoid robot’s head) to satisy the composition quality criteria.

• Inadequate photographic camera quality, due to the lack of ஂash (in robots by Ahn et al., ⒍im et al. and ⒉adde
and ⒍arlapalem) and low resolution (0.⑵ ⒏⒒ by Ahn et al. and ⒍im et al., ⑴ܩ ⒏⒒ by ⒉adde and ⒍arlapalem,
⑻ܩ ⒏⒒ by Byers et al.).

• flimited availability for further research/teaching, since i) the source code/hardware designs are not publicly
available for any of the robots described in this chapter, which signi஁cantly restricts reproducibility of the
results and further research, ii) the robots use expensive equipment (like the laser range ஁nder used by the
robot of Byers et al.) or are built on expensive platforms (like ⒐A⒑, used by ⒉adde and ⒍arlapalem), and
iii) most of the platforms on which the robots are based are proprietary (i.e. not available o஀-the-shelf; this
includes robots by Byers et al., Campbell and ⒒illai, Ahn et al. and ⒍im et al.).

The autonomous event photographer robot proposed in the following chapters of this dissertation attempts to lit
these limitations.



Chapter 3

Solving Main Robot Photographer Challenges with RGB-D Data

This chapter surveys the solutions to two main problems in autonomous robotic photography: human subject detection/-
tracing and obstacle detection/avoidance. A reliable solution to the human detection/tracing problem is essential since the
quality of a photo’s composition depends directly on accurate human localization in the image. flikewise, a solution to the
obstacle detection and avoidance problem is necessary for the robot to be able to randomly wander about in an unstructured
environment, while avoiding collisions with any obstacles that may appear in its path.

This chapter starts by thoroughly surveying previous approaches to solving these challenges using colour and depth data
(separately or combined). A reader familiar with the typical computer vision/machine learning solutions to these tasks is
encouraged to sip directly to the end of the chapter (section 3.3), where the proposed RGB-D data based methods are
described.

3.1 Human subject detection

As discussed in the project’s aims section ,(⑶ܩ) the robot should be able to produce well-composed pictures of
humans during various events. To accomplish this task, an autonomous robot photographer needs to be able to
detect human subjects in its environment.

⒕ince this task is absolutely crucial to the robot photographer’s performance (inaccurate human subject detection
leads to wrong picture composition, which in turn leads to bad quality pictures), the sections below summarize
these techniques in detail for both image and depth data, starting with human detection in images.

3.1.1 Survey of image-based body/face detection methods

The goal of human body/face detection tasks is to determine the positions and sizes of human bodies and/or faces if
they are present in the input images. The human body detection task is complicated due to a large within-class vari-
ability of human images, arising rom changes in pose or clothing, lighting, occlusions and background variations.
The face detection task is further complicated by the additional sources of variance arising rom presence/absence
of facial features (beards, moustaches, di஀erent haircut styles, glasses), and changes in facial expression.

Due to their immediate applicability in intelligent vehicle, surveillance, security, ⒊C⒋, robotics and other areas,
both of these tasks have received a signi஁cant amount of research interest over the years, and a large number of
di஀erent techniques has been proposed (e.g. see the human detection surveys by Dollár et al. (⑴01⑴), Enzweiler and
⒉avrila (⑴00⑻) and face detection surveys by ⒜hang and ⒜hang (⑴010), ⒛ang et al. (⑴00⑴)).

While the existing body of research on these task is very large (e.g. a survey by ⒛ang et al. alone references more
than 1⑷0 reported face detection approaches), a few of the most inஂuential recent techniques are summarized below,
starting with a very brief overview of statistical approach to object detection.

1⑸
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3.1.1.1 Generative vs. discriminative statistical object detection

⒕tatistical approaches to object detection in images are oten split into generative and discriminative (see, for
example, ⒐g and ⒌ordan (⑴001)). ⒉enerative approaches model the joint probability of object’s appearance x and
its class y (i.e. ⒒r(x, y)). ⒑ten this is achieved by learning a class conditional probability of generating a certain
object’s appearance (i.e. ⒒r(x|y)), and the class priors (⒒r(y)). Combined with the Bayes rule this approach
allows to ஁nd the class ŷ that maximizes the posterior probability ⒒r(y|x) for a given object’s appearance x,
by calculating ŷ = argmaxy ⒒r(y|x) = argmaxy ⒒r(x, y) = argmaxy ⒒r(x|y)⒒r(y). An example of an early
generative approach for human detection proposed by ⒉avrila and ⒒hilomin (1⑻⑻⑻) is given in section .⑶ܩܩܫ

⒋n contrast, discriminative approaches learn the boundary that separates the object’s classes, i.e. they directly model
the (scaled) posterior distribution ⒒r(y|x). As argued by Vapnik (1⑻⑻⑺), generative classi஁ers need to solve a more
complicated modelling problem to obtain ⒒r(x|y), even though the joint distribution serves just as an intermediate
step in the posterior distribution calculation. ⒑ten such attempts run into data sparsity problems due to the “curse”
of high dimensionality. ⒈or this reason, the majority of state-of-the-art human/face detectors use discriminative
techniques (Dollár et al., ⑴01⑴, ⒜hang and ⒜hang, ⑴010), in which the discriminative classi஁ers are combined with
the human/face feature descriptors to obtain binary1 classi஁ers. Both the classi஁ers and the features that they use
are described below.

3.1.1.2 Discriminative classiϒers frequently used in human detection

Widely adopted discriminative classi஁er learning paradigms include feed-forward multilayer neural network training
using backpropagation (Werbos, 1⑻⑹⑶), adaptive weak-classi஁er boosting (AdaBoost, ⒈reund and ⒕chapire (1⑻⑻⑹))
and maximally-separating hyperplane learning using support vector machines (⒕V⒏s, Cortes and Vapnik (1⑻⑻⑷)).
⒕ince a large number of human body/face detection methods are based on these features discriminative classi஁ers,
each of them is individually described below, starting with the support vector machines. (The human descriptor
features used by these classi஁ers are much more diverse and are described later.)

Support Vector Machines ⒎inear ⒕V⒏s, as originally introduced by Cortes and Vapnik (1⑻⑻⑷), can be used for
fast and accurate binary classi஁cation of linearly-separable data.

⒉iven a set of training examples A = (x1, y1), ..., (xk, yk) containing ⒐-dimensional data points xi and their
classes yi, ⒕V⒏s construct an optimally separating hyperplane wTx + b = 0, which maximizes the distance
between the hyperplane and the closest positive/negative training points (the “margin”). The boundaries of the
margin are described by the support hyperplane equations wTx + b = ±1 (by appropriately rescaling w and b,
since it does not change the decision hyperplane), with the distance between them equal to 2

||w|| (illustrated in
image a) of ஁gure .(1ܫ

The parameters of the optimally separating hyperplane w and b (normal vector and o஀set rom the origin, scaled
by ||w||) can be found by solving the following quadratic optimization problem:

min
w,b

1

2
||w||2,

s.t. yi(w
Txi + b) ≥ 1, for i = 1, ..., k,

(1ܫ)

1“⒊uman”/“non-human” or “face”/“non-face”.
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Decision hyperplane

Support hyperplanes

Support vectors

2
||w||

_

Margin

a) b)

⒈igure :1ܫ ⒕upport Vector ⒏achines: a) a regular linear ⒕V⒏, b) a sot-margin linear ⒕V⒏. The decision (maximally
separating) hyperplane is described by equationwTx+b = 0, support hyperplanes are described using equationswTx+b =
±1.

or its dual ⒎agrangian form:

max
α1,...,αk

k∑

i=1

αi −
1

2

k∑

i,j=1

αiαj(x
T
i xj)

s.t. αi ≥ 0, for i = 1, ..., k, and
k∑

i=1

αiyi = 0.

(⑴ܫ)

Ater constructing the maximum-margin hyperplane, the class of an unseen ⒐-dimensional point x can be deter-
mined by examining on which side of the hyperplane the point lies, i.e. by calculating f(x) = sign(wTx + b)

or equivalently f(x) = sign(
∑k

i=1 αiyi(x
T
i x) + b). ⒕ince only support vectors will have non-zero ⒎agrangian

parameters αi, new data points can be very eஃciently classi஁ed by ⒕V⒏s.

⒕V⒏s can deal with non-linearity in two ways: by allowing “sot” margins (i.e. allowing some outliers to be
misclassi஁ed) or by using a non-linear transformation to project the data points rom the input space to a high- or
in஁nite-dimensional feature space.

⒋n the former case this is achieved by allowing a given point xi to violate the margin by ξi ≥ 0 (i.e. to have the
distance to the separating hyperplane of 1−ξi

||w|| ≤ 1
||w|| , see image b) in ஁gure 1ܫ for illustration). This results in

the following primal form of the optimization problem:

min
w,b,ξ1,...,ξk

1

2
||w||2 + C

k∑

i=1

ξi,

s.t. yi(w
Txi + b) ≥ 1− ξi, for i = 1, ..., k, and

ξi ≥ 0, for i = 1, ..., k,

(⑵ܫ)

where C controls the trade-o஀ between the margin size and the toleration of misclassi஁ed outliers.

⒋n the latter case, the “kernel trick” is used. The key insight there is that the linearly non-separable data in the input
space could be projected to the inner product space (with its associated norm) in which the data becomes linearly
separable (see ஁gure .(⑴ܫ This can be achieved by replacing all inner products uTv with the inner products in the
projected space K(u,v) = ⟨ϕ(u), ϕ(v)⟩, where ϕ(·) is the projection operator. ⒋t is important to note that the
explicit representation for ϕ(·) is not required, provided thatK(u,v) satis஁es the⒏ercer’s (1⑻0⑻) condition.
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a) b)

c) d)

⒈igure :⑴ܫ “⒍ernel trick” illustration using linear ⒕V⒏s. The original ⑴-dimensional non-linearly separable input data rom
image a) is transformed into a ⑵-dimensional feature space using the quadratic transformation [x1, x2] 7→ [x1, x2, x

2
1 + x22],

where it becomes linearly separable. The obtained decision/support hyperplanes are shown in image c), and the ஁nal decision
boundary (when transformed back into the input space) is shown in d).

⒈inally, the obtained quadratic optimization problems can be solved using industry standard ⒓⒒ solvers (see Bottou
and ⒎in (⑴00⑹) for reference).

Weak-classiϒer boosting using AdaBoost A di஀erent approach of learning discriminative classi஁ers is proposed
by ⒈reund and ⒕chapire (1⑻⑻⑹). ⒋n particular, ⒈reund and ⒕chapire proposes a method to combine a given family
of “weak” classi஁ers (where classi஁ers are “weak” in a sense that they perform only marginally better than random)
into a “strong” classi஁er through a number of training rounds, where in each round i) the best weak classi஁er for
the current training data is chosen, and ii) the training example weights are decreased/increased based on their
correct/incorrect classi஁cation respectively.

The ஁nal strong classi஁er is obtained by taking a weighted linear combination of weak classi஁ers, where the weights
assigned to individual weak hypotheses are inversely proportional to the number of classi஁cation errors that they
make.

This approach is formalized in A௯aB௺௺௾௿ algorithm (1ܩܩܫ) and illustrated in ஁gure .⑵ܫ

As proven by ⒕chapire and ⒕inger (1⑻⑻⑻), the training error of a strong classi஁er obtained using AdaBoost decreases
exponentially in the number of rounds, i.e. using the notation rom algorithm ,1ܩܩܫ the training error at round
T is bounded by

1

N

N∑

i=1

Jsign(f(xi)) ̸= y±i K ≤ 1

N

N∑

i=1

exp
(
−y±i f(xi)

)
, where y±i =

{
1, if yi = 1,

−1, otherwise. (⑶ܫ)

Feed-forward multilayer neural networks A third common approach of learning discriminative classi஁ers in-
volves learning the weights of arti஁cial neural networks (A⒐⒐s). The main building block in an A⒐⒐ is a single
neuron, whose behaviour is de஁ned by a weight vector w = [w0, ..., wn]

T ∈ R
n+1 and an activation function
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Input data 1st classifier

Re-weighted input data 2nd classifier

Re-weighted input data 3rd classifier

Final (strong) classifier

Running 1st

classifier
Adjusting
weights

Running 2nd

classifier

Running 3rd

classifier

Adjusting
weights

Combining
classifiers

Misclassified
examples

α1 + α2 + α3 =

⒈igure :⑵ܫ A simpli஁ed illustration of A௯aB௺௺௾௿ weak classi஁er boosting algorithm .(1ܩܩܫ) ⒋n this training sequence,
three weak classi஁ers that minimize the classi஁cation error are selected; ater selecting each classi஁er, the remaining training
examples are reweighed (increasing/decreasing the weights of incorrectly/correctly classi஁ed examples respectively). When
all three classi஁ers are selected, a weighed linear combination of their individual thresholds is taken, yielding a ஁nal strong
classi஁er. Adapted rom ⒜abarauskas (⑴01⑴).
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Algorithm 3.1.1.1 Weak classi஁er boosting using AdaBoost. ⒋t requires N training examples given in the array
A = (x1, y1), ..., (xN , yN ) (where yi = 0 for a negative and yi = 1 for a positive training example), a family H
of weak classi஁ers and a number of rounds T to construct a strong classi஁er. The result of the boosting is a ஁nal
strong classi஁er f , which can be used to classiy an unseen example x based on the sign of f(x).
A௯aB௺௺௾௿(A,H, T )
1 // Initialize training weights (where m is the count of negative, l is the count of
⑴ // positive training examples).
⑵ for each training example (xi, yi) ∈ A
⑶ if yi = 0
⑷ w1,i ← 1

2m
⑸ else
⑹ w1,i ← 1

2l

⑺ for t← 1 to T
⑻ // 1. Normalize the weights:
10 for each weight wt,i

11 wt,i ← wt,i
∑N

j=1 wt,j

1⑴ // 2. Select the best weak classiमer ht(x) ∈ H which minimizes the training error ϵt:
1⑵ ht ← argminh∈H

∑
iwt,iJh(xi) ̸= yiK // where J�K is the indicator function.

1⑶ ϵt ←
∑

iwt,iJht(xi) ̸= yiK

1⑷ // 3. Update the weights:
1⑸ for each training example (xi, yi) ∈ A
1⑹ if ht(xi) = yi
1⑺ wt+1,i ← wt,i

ϵt
1−ϵt

1⑻ else
⑴0 wt+1,i ← wt,i

⑴1 return f(x) =
∑T

t=1(ht(x)− 1
2) log

1−ϵt
ϵt
.

σ : R→ R. ⒋n particular, given an input vector x = [1, a1, ..., an]
T the neuron produces an output by calculating

σ(xTw), as illustrated in ஁gure .⑴⑶ܫ

A single neuron can be trained by minimizing the square error, which given a set of training examples {xi, yi}
(where xi ∈ R

n is a vector of inputs, and yi ∈ R is the observed output) can be de஁ned as

ξ(w) =
∑

i

(
σ(xT

i w)− yi
)2
.

The error can be minimized using gradient descent method by initializing the weights vector to a random vector
w0 ∈ R

n+1 and using the following iterative weight update rule, until the weights change by less than a prede஁ned
⑴This subsection presents the derivations using the sigmoid activation function (i.e. σ(x) , 1

1+exp(−x)
), but other activation functions,

like hyperbolic tangent σ(x) = tanh(x), arctangent σ(x) = 2
π
tan−1

(

π
2
x
)

, error function σ(x) = erf
(√

π

2
x

)

or simple algebraic
functions like σ(x) = x

√

1+x2
or σ(x) = x

1+|x| can also be used.
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Σ
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x1

xn
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s=Σixiwi σ(s)

⒈igure :⑶ܫ Behaviour of a neuron with the sigmoid activation function. ⒐euron’s weights are given by w0, ..., wn and the
inputs are given by x1, ..., xn.

threshold:
wt+1 = wt − η

∂ξ(w)

∂w

∣∣∣∣
wt

= wt − 2η
∑

i

(
σ(xT

i wt)− yi
)
σ(xT

i wt)
(
1− σ(xT

i wt)
)
xi,

(⑷ܫ)

where η is the gradient descent step size.

While a single neuron can only learn a separating hyperplane (i.e. it is limited to linearly separable data), a multilayer
neural network can approximate more sophisticated functions. ⒋n fact, Cybenko (1⑻⑺⑻) has proved the universal
approximation theorem for sigmoid activation functions, which states that a three-layer feed-forward neural network
(with a ஁nite number of hidden neurons) can be trained to approximate any continuous non-linear function with
arbitrary precision.

The weights for multilayer feed-forward neural networks can be learned using a backpropagation algorithm (Wer-
bos, 1⑻⑹⑶), summarized below.

⒎et wi→j be the weight of the synapse connecting neurons i and j, let the sum of the weighed inputs of neuron
j be denoted by sj =

∑
k zkwk→j where k iterates over all neurons connected to j, and let the output of j be

written as zj = σ(sj), where σ is j ’s activation function (see ஁gure ⑷ܫ for illustration).

⒈igure :⑷ܫ An excerpt rom a multilayer feed-forward network, illustrating the notation described in the text.

⒈urthermore, let the output of the network be de஁ned as hw(x), where the weights vector w contains all weights
in the network, i.e. w = (wi→j) for all i, j. Then, for the same error measure

ξ(w) =
∑

i

ξi(w) =
∑

i

(hw(xi)− yi)2
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the gradient descent update for the weights can be described using

wt+1 = wt − η
∑

i

∂ξi(w)

∂w

∣∣∣∣∣
wt

,

where
∂ξi(w)

∂wj→k
= 2 (hw(xi)− yi) zj

∂hw(xi)

∂sk
,

and

∂hw(xi)

∂sk
=





σ′(sk), if k is an output neuron,
∑

v receives
rom k

∂hw(xi)

∂sv
wk→vσ

′(sk), otherwise.

The error gradient can then be calculated by placing the ith example at the inputs of the neural network, calcu-
lating sk and zk for all the nodes (the “forward-propagation” step) and working backwards rom the output node
calculating ∂hw(xi)

∂sk
(the “backpropagation” step).

3.1.1.3 Human/face descriptor features

The discriminative classi஁ers as described above use feature vectors both for training and for classi஁cation. The most
common descriptor features rom which these vectors are constructed are described below, while further examples
of discriminative detectors based on these features are discussed in the appendix A.⑴.

Image intensities The simplest possible approach of obtaining the features to be used with discriminative clas-
si஁ers is to use the raw image intensities.

⒑ne of the earliest advanced face detection systems developed by ⒔owley et al. (1⑻⑻⑺) uses this approach. ⒋n
particular, ⒔owley et al. describe a few three-layer feed-forward neural network con஁gurations, connected in a
retinal fashion. A representative multilayer network (“network 1” in the original source) consists of:

• An input layer, which takes a 20× 20 pixel size, intensity normalized, grayscale input image.

• Two copies of the hidden layer, which contain ⑴⑸ neurons each. ⒈our neurons in this layer are connected to
non-overlapping 10× 10 pixel regions, 1⑸ neurons connected to non-overlapping 5× 5 pixel regions and ⑸
neurons connected to overlapping 20× 5 pixel horizontal regions.

• An output layer, which contains a single real-valued output neuron, which is connected to the outputs of all
hidden layer neurons. This neuron produces a (scaled) estimate of ⒒r(face|image).

⒐early ⑵,000 weights of “network 1” are learned in a supervised fashion: around 1⑷,000 face images (generated by
slight rotations, translations, scaling and mirroring of over a 1,000 original face images) are used as positive training
examples; negative training examples (not containing faces) are bootstrapped rom 1⑴0 large-resolution images
of scenery, using false positive misclassi஁cations of the neural network at each iteration of the backpropagation
algorithm.

⒈aces are then detected using a sliding-window approach over a multiscale pyramid representation of the input
image. ⒋n order to reduce the number of false positive detections, ⒔owley et al.’s system uses multiple neural
networks in parallel (trained on di஀erent subsets of the data), combined with di஀erent schemes of arbitration. The
behaviour of the overall system and the structure of “network 1” is illustrated in ஁gure .⑸ܫ
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⒈igure :⑸ܫ ⒔owley et al.’s (1⑻⑻⑺) face detection system based on feed-forward multilayer neural networks, trained using raw
image intensities as the input features. Adapted rom ⒔owley et al. (1⑻⑻⑺).

Principal components ⒒rincipal Component Analysis (⒒CA, ⒒earson (1⑻01)) is one of the best known feature
extraction/dimensionality reduction techniques. ⒉iven a set of observations produced by potentially correlated
variables, ⒒CA ஁nds the eigenvectors corresponding to the largest-magnitude eigenvalues of the data’s covariance
matrix (called “principal components”), and re-projects the data in these directions. ⒋n this new coordinate system,
the observations are guaranteed to be uncorrelated.

⒉iven a set of aligned human images (of equal size) ⒒CA can be used to extract the principal components, which
describe the most variance in the training data (by discarding the principal components with small eigenvalues).
Then the human images can be succinctly represented in this new, reduced dimensionality space, and these repre-
sentations can be used as input features for discriminative classi஁ers. A common way of ஁nding these eigenvectors
(principal components) and their associated eigenvalues is by using a ⒕ingular Value Decomposition (⒕VD).

⒉iven a matrix X containing m data samples in the columns (with n rows representing individual features), X
can be decomposed as X = UΣV T using ⒕VD, where U and V are orthonormal matrices, and Σ is a diagonal
matrix containing non-negative values.

Then X ’s covariance matrix C can be expressed as

C =
1

n
XXT

=
1

n
(UΣV T )(UΣV T )T

=
1

n
UΣV TV Σ

TUT

= U

(
1

n
Σ

2

)
UT (Using the orthonormality of U , V and diagonality of Σ).

The principal components (= eigenvectors of the covariance matrix C) can be obtained by reading o஀ non-zero
columns of U . The associated eigenvalues are given on the diagonal of matrix 1

n
Σ

2.

This technique can be applied to aligned, grayscale,M×N-pixel size human images by subtracting the mean image
rom all training images, “linearizing” individual training images by putting all pixel intensities rom the image into
a singleM ×N length column vector and combining these column vectors into the data matrix X .

Turk and ⒒entland (1⑻⑻1) apply this technique in face detection by extracting the principal components (which they
named “eigenfaces”) rom an aligned grayscale face training set. A representative example of eigenfaces is shown in
஁gure .⑹ܫ
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⒈igure :⑹ܫ Twelve eigenfaces with the corresponding largest eigenvalues, extracted rom the ⒎abeled ⒈aces in the Wild
(⒊uang et al., ⑴00⑹) dataset. Adapted rom ⒒edregosa et al. (⑴011).

Ater extracting the principal components Turk and ⒒entland consider a reduced-dimensionality “face space”, which
is obtained by keeping just the top k eigenfaces with the highest corresponding eigenvalues. ⒊uman face images
projected into this space stay relatively similar to the original images (since the top eigenfaces successfully capture
a large amount of variance in the input image), while non-face images projected to the “face space” appear very
di஀erent. This property is exploited using a concept of “face map” ξ, where each point on the face map ξ(x, y)
corresponds to the distance between the image window centered at (x, y) and this window’s projection onto face
space. The faces can then be detected by searching for the minima in the face map.

Haar wavelets ⒒apageorgiou and ⒒oggio (⑴000) propose the use of ⑴-dimensional ⒊aar wavelets to encode the
features of the human visual appearance.

⒋n a single dimension ⒊aar wavelets are de஁ned as follows. ⒎et j be the “resolution” of a 1-dimensional image
containing 2j pixels. Then the basic ⒊aar wavelet at resolution j is de஁ned as ψj

i =
√
2jψ(2jx − i) for i =

0, ..., 2j − 1, where

ψ(x) =





1, 0 ≤ x < 1
2 ,

−1, 1
2 ≤ x < 1,

0, otherwise.

⒈urthermore, the scaling function of ⒊aar wavelets is de஁ned as ϕji =
√
2ϕ(2jx − i) for i = 0, ..., 2j − 1,

where

ϕ(x) =

{
1, 0 ≤ x < 1,

0, otherwise.

⒉iven this single-dimensional ⒊aar wavelet de஁nition, ⒒apageorgiou and ⒒oggio propose the following ⑴-
dimensional generalizations of ⒊aar wavelets:

• “Vertical” wavelets, obtained by taking a tensor product of a wavelet with a scaling function, ϕh(x, y) =

ψ(x)⊗ ϕ(y),

• “⒊orizontal” wavelets, obtained by taking a tensor product of a scaling function with a wavelet, ϕv(x, y) =
ϕ(x)⊗ ψ(y),

⒈igure :⑺ܫ Two-dimensional ⒊aar wavelets with square support, as described by ⒒apageorgiou and ⒒oggio (⑴000). ⒈rom let
to right: vertical, horizontal and diagonal ⑴D ⒊aar wavelets.
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• “Diagonal” wavelets, obtained by taking a tensor product of two wavelets, ϕd(x, y) = ψ(x)⊗ ψ(y).

⒈urthermore, they de஁ne these wavelets as always having a square support, yielding the wavelets illustrated in ஁gure
.⑺ܫ

⒈inally, to obtain a richer model of humans, ⒒apageorgiou and ⒒oggio use an over-complete wavelet vocabulary,
which is obtained by allowing a ⑹⑷% percent spatial overlap between wavelets. ⒈or the 128 × 64 pixel window
and two wavelet resolutions (32 × 32 and 16 × 16 pixels), this approach yields a vocabulary containing 1,⑵⑴⑸
wavelets.

To reduce the detector’s sensitivity to lighting, ⒒apageorgiou and ⒒oggio calculate the ⒊aar wavelet feature responses
individually in each of the ⒔, ⒉, B channels and keep only the one with the highest absolute value. This yields a
1,⑵⑴⑸ feature vector representing an input image.

The detector itself is based on the ⒕V⒏ classi஁er as described above, with a quadratic kernel (K(x,y) = (xTy+

1)2). ⒋t is trained using 1,⑺00 positive training images (containing humans) and 1⑸,⑹⑴⑸ negative training images
(guaranteed not to contain humans).

The average wavelet responses to the images in the training set (normalized and encoded in grayscale) are shown
in ஁gure .⑻ܫ

Vertical        Horizontal       Diagonal Vertical        Horizontal       Diagonal

16 x 16 32 x 32

⒈igure :⑻ܫ The average ⒊aar wavelet responses (normalized and encoded in grayscale) to the images in the training set of
⒒apageorgiou and ⒒oggio’s (⑴000) human detector. ⒔eproduced rom ⒒apageorgiou and ⒒oggio (⑴000).

Haar-like features Viola and ⒌ones (⑴00⑶) propose the use ⒊aar-like features, which generalize ⑴-D⒊aar wavelets
of ⒒apageorgiou and ⒒oggio by allowing non-square support and additional con஁gurations (see ஁gure .(10ܫ

These ⒊aar-like features are further generalized by ⒎ienhart and ⒏aydt (⑴00⑴), by allowing di஀erent feature ori-
entations and adding a few more possible con஁gurations (see ஁gure .(11ܫ

The values of these features can be eஃciently calculated using “integral image” representation: given a grayscale
input image I(x, y), the integral image is de஁ned as Ĩ(x, y) =

∑
x′≤x,y′≤y I(x

′, y′) (see ஁gure .(⑴1ܫ Using
dynamic programming the integral image can be constructed in O(n) time, where n is the number of pixels in the
input image.

-1 1 1
1 1

1

1

1

1

-1

-1

-1
-1

-1

⒈igure :10ܫ Two-rectangle, three-rectangle and four-rectangle ⒊aar-like features, as proposed by Viola and ⒌ones (⑴00⑶).
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⒈igure :11ܫ Extended set of ⒊aar-like features, as proposed by ⒎ienhart and ⒏aydt (⑴00⑴).

Then the integral of any rectangular area in the input image can be evaluated in four array references (see ஁gure ,(⑵1ܫ
meaning that e.g. a three-rectangle ⒊aar-like feature response can be calculated using eight array references.

⒋n a seminal work Viola and ⒌ones (⑴00⑶) propose a ⒊aar-like feature based attentional face detector cascade which
achieves high detection/low ⒈⒒ rates and performs in real-time. A given input image must be classi஁ed as a “face”
by all layers in the cascade in order to have the ஁nal “face” classi஁cation; if any of the cascade layers reject the image,
its processing is immediately stopped. Due to this “immediate rejection” property, each layer is required to have
high detection rates, but very modest ⒈⒒ rates. ⒒utting it in context, if every layer has ⑻⑻% detection and ⑷0% ⒈⒒
rates, then a ஁nal 1⑷-layer cascade would have ⑺⑸% detection and 0.00⑵% ⒈⒒ rates.

The individual layers in this attentional cascade are obtained by combining⒊aar-like features with weak classi஁cation
power into a strong classi஁er using AdaBoost .(1ܩܩܫ) Weak classi஁ers are being added into the strong classi஁er
until the layer achieves a very high detection rate (around ⑻⑻%) with a modest ⒈⒒ rate (around ⑷0%) on the test
set. ⒈urthermore, each of the layers in the cascade is trained on the “hard” negative training examples, which are
obtained using the ⒈⒒ misclassi஁cations of the earlier layers of the cascade. This means that the layers further
down the cascade contain more features (and thus are more time consuming to evaluate), but at the same time,
early layers can be evaluated very rapidly, especially using the integral image representation as in ஁gure .⑵1ܫ ⒕ince
faces are being detected using the sliding window approach over the input grayscale image, this allows the majority
of windows (which are likely not to contain any faces) to be rejected rapidly, with the discriminative power of the
cascade concentrated on face-like areas of the image.

⒈igure :⑴1ܫ ⒋ntegral image representation by Viola and
⒌ones (⑴00⑶). The value of the integral image Ĩ at coor-
dinates (x, y) is de஁ned as Ĩ(x, y) =

∑
x’≤x,y’≤y I(x, y),

where I is the original grayscale image. Taken rom ⒜aba-
rauskas (⑴01⑴).

⒈igure :⑵1ܫ ⒏ethod to rapidly calculate rectangle feature
values: D = Ĩ(x4, y4)−Ĩ(x3, y3)−Ĩ(x2, y2)+Ĩ(x1, y1).
Taken rom ⒜abarauskas (⑴01⑴).

Local binary patterns ⒈irst introduced by ⒑jala et al. (1⑻⑻⑸), local binary patterns (⒎B⒒s) attempt to achieve
lighting invariance while retaining ⒊aar-feature-like sensitivity to local spatial patterns. The original ⒎B⒒ operator
de஁nes an ⑺-bit value for each pixel in the input grayscale image. This value is derived rom a 3 × 3 pixel size
neighbourhood of each pixel by binarizing the neighbourhood pixel values using the center pixel value as a threshold,
and arranging the results into a binary number (see ஁gure ⑶1ܫ for illustration).
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⒈igure :⑶1ܫ ⒎ocal binary pattern (⒎B⒒) feature calculation.

Spot Spot/flat Line end Edge Corner

⒈igure :⑷1ܫ Examples of spatial pattern prim-
itives that ⒎B⒒ features can detect. Adapted
rom ⒊adid et al. (⑴00⑶).

As a result of this local thresholding, ⒎B⒒ features are to a large degree lighting-invariant; furthermore, they can
detect various spatial pattern primitives (a few examples are shown in ஁gure .(⑷1ܫ

The ⒎B⒒ descriptors have been further extended in the work of ⒑jala et al. (⑴00⑴), by allowing di஀erent neigh-
bourhood sizes, and describing rotation-invariant and “uniform” families of ⒎B⒒s. ⒋n the ஁rst case, the value of the
operator ⒎B⒒P,R(x, y) is obtained by thresholding P equidistant pixels on a circle of radius R centred at point
(x, y) (illustrated in ஁gure .(⑸1ܫ ⒕uch operator can take one of 2P possible values.

The “uniform” patterns are de஁ned as the ones which have zero or two “0 → 1” or “1 → 0” transitions if
the pattern is considered to be circular (e.g. patterns 00001100, 11100000 and 11111111 would be considered
uniform, but a pattern 00101000 would not). This family is denoted ⒎B⒒u⑴P,R; in the case of P = 8 there are ⑷⑺
such patterns.

⒕imilarly, rotation-invariant ⒎B⒒ patterns are de஁ned as

⒎B⒒riP,R = min{ror(⒎B⒒P,R, i)|i = 0, ..., P − 1},

where ror(x, y) is a rotate-right operator which rotates a binary input x by y bits to the right. ⒋n this case, patterns
000011112 = 1510, 000111102 = 3010 and 111000012 = 22510 would be mapped to the same rotation-invariant
pattern 000011112 = 1510.

These features are used in the face detector by ⒊adid et al. (⑴00⑶). They use a standard sliding window approach,
where 19× 19 pixel size window is scanned over the image pyramid (with each layer subsampled at the scale .(⑴ܩ
To obtain a face representation using ⒎B⒒s, ⒊adid et al. divide the 19 × 19 window into ⑻ overlapping regions
of 10 × 10 pixels. ⒋n each region a ⒎B⒒4,1 operator is used to obtain a 1⑸-bin histogram of ⒎B⒒ values. These
histograms are concatenated into a single 144-bin histogram. ⒈urthermore, a ⒎B⒒u⑴8,1 operator is applied to the
whole 19 × 19 pixel image, and a ⑷⑻-bin histogram is assembled (putting all non-uniform patterns into a single
bin). The combined 203-bin histogram is used as a feature vector representing the face.

⒈or the actual classi஁er that determines the presence/absence of a face in a given window, ⒊adid et al. use an
⒕V⒏ classi஁er with the quadratic kernel, trained using ⑸,000 face images and 1⑶,⑷⑸0 bootstrapped non-face pat-
terns.

Another ⒎B⒒-based face detector is described by ⒜hang et al. (⑴00⑹), where they extend the basic ⒎B⒒P,R features

P = 8, R = 1.0 P = 12, R = 2.5 P = 16, R = 4.0

⒈igure :⑸1ܫ Examples of extended ⒎B⒒ feature set. Adapted rom ⒑jala et al. (⑴00⑴).
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⒈igure :⑹1ܫ ⒏ultiple block local binary pattern (⒏B-⒎B⒒) feature calculation.

to deal with multiple pixel blocks, instead of individual pixel neighbourhoods (illustrated in ஁gure .(⑹1ܫ These
multiple block ⒎B⒒ (⒏B-⒎B⒒) features are used in decision tree weak classi஁ers, which are boosted into a strong
classi஁er using AdaBoost.

Local receptive ϒelds Extraction of the most important non-adaptive features can be viewed as an optimization
problem w.r.t. classi஁cation task. Analogously, ஁nding the feature sets that adapt to the underlying training data
set can be seen as part of this optimization problem (Enzweiler and ⒉avrila, ⑴00⑻).

Adaptive local receptive ஁elds (⒎⒔⒈s) introduced by ⒈ukushima (1⑻⑺0) provide a way to learn the relevant features
during the training using a three-layer feed-forward neural network with the following layer contents (graphically
illustrated in ஁gure :(⑺1ܫ

• The ஁rst (input) layer has one neuron for each pixel of the input grayscale image I .

• The second (hidden) layer is composed of N “branches” Bi=1,...,N , where each neuron in every branch is
connected to a ஁xed-size local region in the input layer, called the neuron’s local receptive ஁eld. Wöhler and
Anlauf (1⑻⑻⑻) who ஁rst described ⒎⒔⒈/A⒐⒐s for human tracking, used 9× 9 pixel size ⒎⒔⒈s in the spatial
dimension.

The ⒎⒔⒈ locations of individual neurons in the same branch are non-exclusive, i.e. they are allowed to
overlap. ⒈urthermore, each neuron in a given branch Bi shares the same set of weights Wi, where
|Wi| = number of pixels in the flRF. E஀ectively, these two conditions ensure that each branch encodes
some translation-invariant local feature of the image.

• The third and ஁nal (output) layer consists of two fully-connected neurons, representing the scaled posterior
probability estimates for human/non-human classes respectively.

This neural network can be trained using a standard backpropagation-like approach, using the gradient descent
optimization (see Wöhler and Anlauf (1⑻⑻⑻) for more details). Ater training, the weights of each branch in the

Output layer
(full connectivity)

Hidden layer
(branches of local
receptive fields)

Input layer
(input image I)

B1 BN

Pr(human|image) Pr(¬human|image)

⒈igure :⑺1ܫ A three-layer feed-forward neural network structure for local receptive ஁eld learning. Adapted rom Enzweiler
and ⒉avrila (⑴00⑻).
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⒈igure :⑻1ܫ Three example 5 × 5 pixel ⒎⒔⒈ features with the corresponding regions of their discriminative power. ⒋mage
a) contains the hidden layer weights for each of the three ⒎⒔⒈ features (brighter rectangles correspond to higher weights).
⒋mage b) contains the weights rom the “human” detection neuron in the output layer corresponding to each of the ⒎⒔⒈
features on the let, indicating the regions where these ⒎⒔⒈s have most discriminative power for the “human” class. Adapted
rom Enzweiler and ⒉avrila (⑴00⑻).

hidden layer can be extracted to be used as features in generic classi஁cation methods. Three examples of extracted
⒎⒔⒈s are visualized in ஁gure .⑻1ܫ

⒋nterestingly, ⒏under and ⒉avrila (⑴00⑸) report that using these extracted features in a ⒕V⒏ classi஁er with a
quadratic kernel achieves better human detection rates than using them in A⒐⒐s.

Histogram of oriented gradients (HOGs) The human detector features presented by Dalal and Triggs (⑴00⑷)
are based on the idea that the localized distributions of edge directions have enough information to represent the
shape of an object, while being relatively invariant to local geometric transformations.

These distributions are constructed using the following procedure:

ܩ A gradient of a given grayscale input image I is calculated.

To achieve this, the original image I is convolved with Gh = [−1 0 1] and Gv = [−1 0 1]T ஁lter kernels
to obtain discrete approximations of horizontal and vertical derivatives of the image (I∂x = I ∗ Gh and
I∂y = I ∗ Gv respectively). Then, the image gradient’s magnitude and orientation images are calculated
using |∇(x, y)| =

√
I∂x(x, y)2 + I∂y(x, y)2 and ∇o(x, y) = tan−1 I∂y(x,y)

I∂x(x,y)
(this process is illustrated in

஁gure .(0⑴ܫ

ܪ The detector window is divided into rectangular (⒔-⒊⒑⒉) or circular (C-⒊⒑⒉) cells (Dalal and Triggs
suggest the use of 8× 8 pixel sized rectangular cells for the human detection task).

a) b) c) d)

⒈igure :0⑴ܫ ⒋mage gradient calculation. ⒋mage a) shows the original input I , image b) shows the horizontal derivative I∂x,
image c) shows the gradient’s magnitude |∇(x, y)|, and image d) shows the combined gradient ∇(x, y).
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ܫ Within each cell a discretized histogram of edge orientations is calculated (using edge’s magnitude as its
contribution to the histogram). Dalal and Triggs recommend the use of ⑻ orientation bins spaced at ⑴0◦ over
0◦–1⑺0◦ (ignoring the gradient’s sign).

ܬ To provide better invariance to changes in the illumination, cell orientation histograms are normalized using
overlapping blocks, which in the recommended implementation occupy 16 × 16 pixels and contain 2 × 2

cells. Due to the block overlap, each cell contributes multiple components to the ஁nal feature vector (each
normalized in a di஀erent block).

The whole procedure of calculating histogram of oriented gradients features is graphically summarized in ஁gure
.1⑴ܫ

Feature vector calculation

Block norma-
lization

Orientation
histogram

Gradient

Input
image

⒈igure :1⑴ܫ ⒊istogram of oriented gradients (⒊⒑⒉) feature calculation. Adapted rom Enzweiler and ⒉avrila (⑴00⑻).

To construct a sliding-window human detector based on ⒊⒑⒉ features Dalal and Triggs train a two-class linear
⒕V⒏ using 1,⑴⑵⑻ positive training examples (together with their vertical mirror images) and 1⑴,1⑺0 negative training
images (guaranteed not to contain people). ⒋n the spirit of Viola and ⒌ones (⑴001) detector cascade, Dalal and Triggs
retrain the ⒕V⒏ using misclassi஁cations rom the ஁rst training round (“hard” training examples, together with the
original negative training images) to improve the ஁nal classi஁er’s performance.

⒊⒑⒉ features are also quite similar to the scale-invariant feature transform descriptors (⒕⒋⒈T, ⒎owe (1⑻⑻⑻)). The
key di஀erences between these two types of descriptors are that i) ⒕⒋⒈T descriptors are computed only at the image
key points (as opposed to all cells in a grid), ii) are pre-processed ater calculation to achieve some degree of
scale/rotation invariance, and iii) are most oten used for object recognition, not classi஁cation.

Shapelets ⒋n an approach that combines ⒎⒔⒈ and ⒊⒑⒉ descriptor ideas, ⒕abzmeydani and ⒏ori (⑴00⑹) present
a way to automatically learn gradient-based human descriptor features.

Their method consists of three steps:

ܩ The “low-level” features are obtained by calculating absolute gradient responses of the input image in four
di஀erent directions, and averaging these responses in the neighbourhood of each pixel. ⒈ormally this is
achieved by convolving the input image I with the directional gradient kernel Gd

⑵, taking the absolute
values of gradient magnitudes and convolving the result with the box ஁lter B (a 5× 5 matrix containing 1

25

in all entries), i.e.
Sd = |I ∗Gd| ∗B,

where Sd is the resulting low-level feature.
⑵⒊orizontal Gh and vertical Gv kernel examples were presented in the description of ⒊⒑⒉ features; ⒕abzmeydani and ⒏ori also use

two diagonal kernels.
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ܪ The detector window is discretized into smaller sub-windows (⒕abzmeydani and ⒏ori propose the sub-
window sizes of 5× 5, 10× 10 and 15× 15 pixels), and AdaBoost algorithm (1ܩܩܫ) is used to combine all
low-level features Sd(x, y) rom a given sub-window i into a strong-classi஁er fi(x, y), called a “shapelet”.
These shapelet features are obtained for each sub-window i.

The most important low-level features selected in all shapelets are shown in ஁gure .⑴⑴ܫ

ܫ ⒑nce more, AdaBoost algorithm is used to combine the obtained shapelets fi(x, y) into a ஁nal human
detector. The low-level features present in the shapelets selected by the ஁nal classi஁er are illustrated in
஁gure .⑵⑴ܫ

⒈igure :⑴⑴ܫ The most discriminative low-level features se-
lected using AdaBoost in individual shapelet training. The
image on the let shows the positive parity low-level features
weighed by their contributions to all shapelets, the image
on the right shows the negative parity low-level features.
Taken rom ⒕abzmeydani and ⒏ori (⑴00⑹).

⒈igure :⑵⑴ܫ The low-level features present in the shapelets
selected using AdaBoost in the ஁nal human detector. The
image on the let shows the features present in the positive
parity shapelets, the image on the right shows the features
in the negative parity shapelets. Taken rom ⒕abzmeydani
and ⒏ori (⑴00⑹).

3.1.1.4 Other approaches for human/face detection in images

Human detection using a hierarchy of shape templates ⒋n ⒉avrila and ⒒hilomin’s (1⑻⑻⑻) approach a discrete
hierarchy of human shape templates is constructed automatically (based on the shape similarity) in a bottom-up
fashion, rom a library of exemplar human shapes (using around 1,000 of manually assembled shape contours,
replicated at ⑷ scales).

At each layer of the hierarchy, the simulated annealing algorithm (⒍irkpatrick et al., 1⑻⑺⑵) is used to cluster a set
of exemplar shapes t1, ..., tN into K partitions S1, ..., SK , s.t. the objective function

K∑

k=1

max
ti∈Sk

Dchamfer(ti, pk)

is minimized. ⒋n this objective function, pk is the “prototype” exemplar shape, which has the smallest maximum
distance to other shapes in the cluster, and Dchamfer is the chamfer distance⑶. These prototype shapes are combined
into the next layer of the hierarchy, and so on. A partial view of the constructed three-level hierarchy is shown in
the let side of ஁gure .⑶⑴ܫ

To use this o஀-line shape hierarchy in an on-line matching, ⒉avrila and ⒒hilomin start by extracting and thresh-
olding the edges in a given input image (using ⑺ discrete edge orientations) to obtain a binary “feature” image.

⑶The average distance between each feature point on one shape and the nearest feature point on the other shape (Borgefors, 1⑻⑺⑸).
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Match using Distance Transform

⒈igure :⑶⑴ܫ A partial human shape hierarchy, obtained by o஀-line clustering of human shape exemplars based on their
similarity, and the subsequent on-line shape matching using distance transform. Adapted rom Enzweiler and ⒉avrila (⑴00⑻).

Then the image’s distance transform (DT) is calculated (see ஁gure ⑷⑴ܫ for illustration) and the image is subdivided
into a coarse grid.

a) b) c)

⒈igure :⑷⑴ܫ Distance transform: the original input image is shown in part a), the detected edges using a Canny (1⑻⑺⑸) edge
detector are shown in part b), and the resulting distance transform is shown in part c).

The chamfer distance is calculated between the root shape of the hierarchy and the DT image at each point on
the coarse grid. ⒋f this distance is smaller than a pre-set threshold then the point’s neighbourhood is searched on
a ஁ner-scale scale grid using chamfer distances to each of the child shapes. ⒋f the chamfer distance for any of the
child shapes is under a distance threshold for any of the points on the ஁ner grid, the grid is further subdivided
and the shapes rom the next level of the hierarchy are searched. This process is continued in a depth-஁rst search
manner until leaf-level shapes rom the hierarchy are matched or all positions on the coarse grid are exhausted, as
illustrated in ஁gure .⑸⑴ܫ

This discrete human shape modelling approach has been later extended to a fully-probabilistic Bayesian ramework
by ⒉avrila (⑴00⑹). ⒑ther notable generative extensions include continuous shape modelling and inclusion of texture
information (see e.g. ⒏under et al. (⑴00⑺)).

Parts-based detection Besides focusing on new types of classi஁ers/human descriptor features, some researchers
attempted to break down the problem of human detection into the problems of i) detecting individual body parts,
and ii) combining these detections into a single “human”/“non-human” prediction. Two main types of decomposi-
tions have been proposed: codebook representations, which represent humans as local codebook feature assemblies,
and semantically-motivated decompositions into anatomical body parts like head, arms, legs and so on.

An example of the former (codebook) approach is described by ⒎eibe et al. (⑴00⑷), in which the codebook is built
by applying a Di஀erence-of-⒉aussians (Do⒉) operator to extract the image patches with the size of at least ⑵σ,
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⒕tep 1: coarse matching ⒕tep ⑴: coarse matching

⒕tep ⑵: coarse matching ⒕tep ⑶: ஁ne matching

⒈igure :⑸⑴ܫ ⒊ierarchical shape matching using chamfer distance calculation with the distance transform image. Each of the
images show both the obtained distance transform (DT) image rom ஁gure ⑷⑴ܫ and the normalized chamfer distance between
the DT image and the shape being matched. The ஁rst three steps illustrate the similarity search on a coarse grid/rough human
shape, which switches to a search on a ஁ner-scale grid/shape when the similarity threshold is reached, as illustrated in the
step ܬ

which are then clustered using an agglomerative scheme. The cluster centroids are used as codebook entries as local
object structure descriptors.

⒏ikolajczyk et al. (⑴00⑶) describe an example of the latter approach, in which they use AdaBoost to train rontal
and pro஁le head/face, rontal/pro஁le upper body and leg detectors, using simple ⒎aplacian/gradient-orientation
based features. Then, a joint likelihood of body part con஁gurations is modelled using the knowledge about the
geometric relations between body parts.

⒕imilar approaches have also been proposed in face detection. ⒈or example, ⒊eisele et al. (⑴001) describe a parts-
based face detector which uses a two-level hierarchy of ⒕V⒏s: the ஁rst level of this hierarchy contains 1⑶ linear
⒕V⒏ classi஁ers trained to detect individual face components, while the second level linear ⒕V⒏ acts as a geometrical
classi஁er.

Human skin colour modelling A number of early face detection approaches attempted to detect the faces by
considering human skin-like coloured patches of the input image. An example of such system is described by ⒛ang
and Ahuja (1⑻⑻⑺). ⒋n this system the skin distribution model is approximated by bivariate ⒉aussian distribution,
஁tted to a histogram of around ⑷00 human skin images in C⒋E ⒎UV colour space, with the luminance coordinate
discarded. The pixel is determined to be generated by the skin if its probability is greater than 1

2 under the ஁tted
⒉aussian distribution. To detect the faces, the input image is segmented into similar colour patches and the patches
with less than ⑹0% human skin colour pixels are rejected. The remaining patches are merged together into elliptical
shapes, which are further veri஁ed using geometric constraints (ratio of major to minor axes) and presence of darker
regions/holes in the ellipse. All shapes passing the veri஁cation are classi஁ed as a faces.

⒊owever, more recent face detection systems use the pixel’s colour similarity to skin colour mostly to complement
more sophisticated human/face descriptors. ⒈or example, a neural-network based face detection system by ⒈eraund
et al. (⑴001) uses explicit color space thresholding in ⒛UV color space to de஁ne the skin color region. ⒒ixels
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outside this region are ignored, reducing the input image area which needs to be searched for faces using the neural
network.

A large number of di஀erent approaches have been proposed to model the skin colour distribution (e.g. see survey
by ⒍akumanu et al. (⑴00⑹)). These approaches include explicit thresholding of the color space, modelling the skin
histograms using naïve Bayes classi஁ers, ஁tting a single or a mixture of ⒉aussians, using feed-forward multilayer
neural networks, maximum entropy models, Bayesian networks and so on.

⒋n the skin detection work by ⒌ones and ⒔ehg (⑴00⑴) (further discussed in ,(⑵ܩܫܫ a particularly large dataset was
assembled for supervised skin model training. Their dataset contains ⑶,⑸⑹⑷ skin and ⑺,⑻⑸⑷ non-skin images, with
over ⑺0 million skin and ⑺⑸0 million non-skin pixels in total.

⒌ones and ⒔ehg compared the performance of histogram and ⒉aussian mixture models (⒉⒏⒏s) when trained on
such large-scale datasets. ⒋nterestingly, they discovered that histogram models outperform ⒉⒏⒏s both in skin
detection accuracy and in computational cost, achieving state-of-the-art performance.

A sample image classi஁cation into skin/non-skin areas using a naïve Bayesian classi஁er trained using ⒌ones and ⒔ehg
dataset is illustrated in ஁gure .⑹⑴ܫ

a) b) c) d)

⒈igure :⑹⑴ܫ ⒑utput rom naïve Bayesian skin classi஁er trained using ⒌ones and ⒔ehg’s (⑴00⑴) dataset. ⒋mage a) shows the
original input, image b) shows ⒒r(sin|rgb)

⒒r(¬sin|rgb) , this ratio is thresholded in image c) obtaining a binary mask, and the original
image ஁ltered using this binary mask is shown in d).

3.1.2 Survey of depth-based human body/head detection methods

Early depth-based human detection work was based on range inputs rom stereo cameras, time-of-ஂight cameras
or scanning laser range ஁nders. With the recent advent of a஀ordable, structured-light based ⒔⒉B-D cameras
like ⒏icrosot ⒍inect (introduced in ⒐ovember ⑴010), A⒕U⒕ Xtion ⒒ro ⒎ive (introduced in ⒕eptember ⑴011)
or ⒒rime⒕ense Carmine (introduced in December ⑴01⑴), a number of ⒔⒉B-D data based human/head detection
methods have been proposed. The most inஂuential methods are summarized below, starting with the ⒔⒉B-D
based human/head descriptor features used in discriminative classi஁cation rameworks.

3.1.2.1 Human/head descriptor features

Histogram of oriented depths/histogram of depth diϑerences ⒕pinello and Arras (⑴011) and Wu et al. (⑴011)⑷
present a three-dimensional extension to histogram of oriented gradients, named histogram of oriented depths
(⒊⒑D) and histogram of depth di஀erences (⒊DD) respectively.

⒊⒑⒉/⒊DD features are computed rom the metric depth image Dm(x, y) which is obtained rom the raw depth
image D(x, y) by calculating Dm(x, y) = 1

a+b×D(x,y) , where a, b are the intrinsic parameters of the ⒔⒉B-D
⑷Both authors derived ⒊⒑D/⒊DD features independently around the same time.
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Depth gradients

8 x 8 cell of depth values
Depth input image

⒈igure :⑺⑴ܫ ⒊istogram of oriented depths (⒊⒑D)/histogram of depth di஀erences (⒊DD) calculation. Adapted rom Wu
et al. (⑴011).

sensor estimated during the factory or later calibration. Ater this depth image conversion, the ⒊⒑D/⒊DD values
are calculated rom Dm(x, y) in a similar way to ⒊⒑⒉s:

ܩ Detector’s window is subdivided into individual rectangular cells (similar to ⒔-⒊⒑⒉),

ܪ ⒑riented depth gradients are calculated in each cell (as illustrated in ஁gure (⑺⑴ܫ and collected into single-
dimensional histograms,

ܫ ⒊istograms are normalized within ஁xed-size blocks containing multiple cells.

The simplest classi஁er that uses ⒊DD features is described by Wu et al. They train a ⒕V⒏ with a linear kernel on
⑶,⑸⑵⑹ depth images of humans, and 1⑶,1⑻⑻ negative training images. ⒈or ⒊DD feature calculation, they use 8× 8

pixel size cells, and overlapping 2 × 2 cell blocks (with ⑺ pixel stride). ⒊istogram is calculated in ⑻-bins, spaced
equally at 40◦ over the interval [0◦, 360◦), and histograms within individual blocks are normalized using ⒎2-⒊ys
normalization measure. Then the histograms in individual cells are concatenated yielding a ⑵,⑹⑺0-dimensional ⒕V⒏
feature vector for a 64× 128 pixel size sliding window detector.

⒋n the approach proposed by ⒕pinello and Arras, two linear ⒕V⒏s are trained for ⒊⒑⒉ and ⒊⒑D features indi-
vidually, using 1,0⑵0 ⒔⒉B-D samples containing people and ⑷,000 negative training samples (randomly selected
rom a background ⒔⒉B-D dataset, guaranteed not to contain people). The posterior probability of human class
is approximated by ஁tting a sigmoid function to the decision functions of both ⒕V⒏s using the method of ⒒latt
(⑴000).

⒉iven the probabilities ⒒r(human|ID), ⒒r(human|IG) (obtained rom ⒊⒑D/⒊⒑⒉ detectors respectively) ⒕pinello
and Arras de஁ne the combined probability of human detection as

⒒r(human|I) = k ⒒r(human|IG) + (1− k)⒒r(human|ID),

where k is de஁ned as the ratio of false negatives between the ⒊⒑D and ⒊⒑⒉ detectors at the equal error rate point
in the validation set.

Local ternary and simpliϒed local ternary patterns ⒋n an attempt to improve the local binary pattern discrim-
ination ability and to reduce their sensitivity to noise in uniform illumination areas of the image, Tan and Triggs
(⑴010) propose local ternary patterns (⒎T⒒s). ⒉iven a grayscale image I , the value of the ⒎T⒒ feature at image
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coordinates (x, y) is derived by concatenating ternary responses

t(x′,y′)(x, y) =





1, I(x′, y′) ≥ I(x, y) + δ,

0, |I(x′, y′)− I(x, y)| < δ,

−1, I(x′, y′) ≤ I(x, y)− δ,

where (x′, y′) ranges over (x, y) neighbours {(x ± 1, y), (x, y ± 1), (x ± 1, y ± 1)} and δ is the user speci஁ed
threshold. An example of a ⒎T⒒ calculation is given in ஁gure .⑻⑴ܫ

Pixel neighbourhood

200 237 217

95 168 218

44 81 175

Input image

0 1 0

-1 1

-1 0

Thres-
holding

with 

δ = 50 -1

LTP value

01010(-1)(-1)(-1)

⒈igure :⑻⑴ܫ ⒎ocal ternary pattern (⒎T⒒) feature calculation.

⒛u et al. (⑴01⑴) further extend ⒎T⒒ features for the use of human detection in depth images. Their proposed
simpli஁ed local ternary patterns (⒕⒎T⒒s) combine ⒎T⒒s and local ஁rst-order discrete derivatives in ⑺ spatial direc-
tions equally spaced between [0, 2π). ⒋n particular, given the depth image D, the value of the ⒕⒎T⒒ centered at
coordinates (x, y) is de஁ned as

⒕⒎T⒒(x, y) = (tx, ty),

where

tx =





1, ∆x ≥ δ,
0, |∆x| < δ,

−1, ∆x ≤ −δ,
=





1, D(x+ 1, y) ≥ D(x− 1, y) + δ,

0, |D(x+ 1, y)−D(x− 1, y)| < δ,

−1, D(x+ 1, y) ≤ D(x− 1, y)− δ,

and

ty =





1, ∆y ≥ δ,
0, |∆y| < δ,

−1, ∆y ≤ −δ,
=





1, D(x, y + 1) ≥ D(x, y − 1) + δ,

0, |D(x, y + 1)−D(x, y − 1)| < δ,

−1, D(x, y + 1) ≤ D(x, y − 1)− δ.

As in ⒎T⒒s, δ is a user speci஁ed threshold.

An illustration of ⒕⒎T⒒ features extracted rom a depth image is shown in ஁gure .0⑵ܫ

a) b)

⒈igure :0⑵ܫ ⒕impli஁ed local ternary pattern (⒕⒎T⒒) feature calculation in depth images. ⒋mage a) shows the original depth
image (where depth is indicated by the pixel intensity); the ⒕⒎T⒒s extracted rom a) are shown in image b), where di஀erent
⒕⒎T⒒s are indicated by di஀erent colours. ⒐ote that the set of all possible ⒕⒎T⒒s is much smaller than the set of all possible
⒎T⒒s (32 = 9 v.s. 38 = 6561 respectively). Taken rom ⒛u et al. (⑴01⑴).
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⒈or the actual human detection, ⒛u et al. (⑴01⑴) use the sliding-window detector (with the scale factor of ,(1ܩ
implemented using linear ⒕V⒏s. To obtain the feature vector that describes the window, ⒛u et al. subdivide
the 64 × 128 pixel size window into 8 × 8 pixel non-overlapping blocks and assemble ⑻-bin single-dimensional
histograms of ⒕⒎T⒒ features in these blocks. The histograms are then concatenated, yielding the ஁nal feature
vector (this process is illustrated in ஁gure .(1⑵ܫ The ⒕V⒏ is trained using ⑶,⑴⑸⑺ manually tagged training examples
containing humans in diverse postures and ⑷⑻,⑷0⑺ negative training examples.

⒕ince ⒕⒎T⒒ features are derived rom regular ⒎T⒒ features, ⒛u et al. (⑴01⑴) also evaluate an analogue human
detector based on the ⒎T⒒s (using 11⑺ bins for ⒎T⒒ histograms). Based on their evaluation, the ⒕⒎T⒒-based
approach yields better results (lower miss rates for every “false positive per window” data point).

⒈igure :1⑵ܫ ⒕⒎T⒒ feature vector calculation in ⒛u et al.’s (⑴01⑴) approach. ⒈irst the detector’s window is divided into non-
overlapping blocks, then the histograms of ⒕⒎T⒒ features in those blocks are calculated. ⒈inally, the obtained histograms are
concatenated yielding the combined feature vector. Taken rom ⒛u et al. (⑴01⑴).

Local surface normals ⒊egger et al. (⑴01⑴) propose another depth-based human descriptor, called the local
surface normals (⒎⒕⒐). As indicated by the name, this descriptor is calculated by ஁tting a plane to the k-nearest
neighbours of each point in the point cloud, and taking the normal vector of this plane (illustrated in ஁gure .(⑴⑵ܫ
These normal vectors are assembled into a ⒎⒕⒐ histogram, which serves as a ஁nal feature vector.

⒊olz et al. (⑴011) present a computationally-eஃcient way to calculate ⒎⒕⒐s, based on the insight illustrated in
஁gure ,⑴⑵ܫ viz. the fact that a surface normal vector to a plane can be calculated by taking the cross product of two
vectors on that plane (in ⒊olz et al.’s approach called the tangential vectors). Their method works as follows:

ܩ ⒉iven the input depth image D(x, y), the horizontal and vertical tangential vector maps are created by
calculating

Th(x, y) = [x+ 1, y,D(x+ 1, y)]T − [x− 1, y,D(x− 1, y)]T ,

Tv(x, y) = [x, y + 1, D(x, y + 1)]T − [x, y − 1, D(x, y − 1)]T .

ܪ ⒈or each of the Cartesian coordinates and each of the maps Th, Tv an integral image (as illustrated in ஁gure
(⑴1ܫ is calculated:

Id,c(x, y) =
∑

x′≤x
y′≤y

[
Td(x

′, y′)
]
c
,

where d ∈ {h, v} and c ∈ {x, y, z}.

ܫ ⒈or every pixel (x, y) in the depth image and any neighbourhood size k, the average tangential vectors in
horizontal and vertical directions (th(x, y) and tv(x, y) respectively) can be calculated using the integral
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images of tangential vector maps as illustrated in ஁gure .⑵1ܫ ⒏ore speci஁cally,

[td(x, y)]c =
1

k2
(Id,c(x+ 0.5k, y + 0.5k)− Id,c(x− 0.5k, y + 0.5k)−

Id,c(x+ 0.5k, y − 0.5k) + Id,c(x− 0.5k, y − 0.5k)),

for d ∈ {h, v} and c ∈ {x, y, z}. ⒐ote, that this calculation takes constant time for each of the depth
points, since it requires 2× 4× 3 memory accesses.

ܬ ⒈inally, the local surface normal vector is given by n(x, y) = th(x, y)× tv(x, y).

a) b) c)

⒈igure :⑴⑵ܫ ⒎ocal surface normal (⒎⒕⒐) feature calculation. ⒋mage a) shows the ⒎⒕⒐ feature calculated for a green point,
by taking a cross product of two tangent vectors obtained rom the red points. ⒋mages b) and c) show a typical result of
annotating the point cloud with ⒎⒕⒐s (top and side views respectively). Taken rom ⒊olz et al. (⑴011).

⒋n ⒊egger et al.’s (⑴01⑵) approach, ⒎⒕⒐s are used to obtain ஁nal human descriptors and to detect humans in the
depth images in the following way. ⒈irst of all, the input point cloud rom ⒔⒉B-D sensor is cropped to the region
of interest (0.5m ≤ depth ≤ 5.0m and 0.0m ≤ height ≤ 2.0m). ⒕econdly, the points in the ⒔⒑⒋ are subsampled
using the voxel⑸ size of 3 cm× 3 cm× 3 cm, and the ⒎⒕⒐s are computed for all remaining points.

Aterwards, the remaining point cloud is segmented into horizontal slices (each of 25 cm height), and a basic
Euclidean clustering technique is applied within each slice, i.e. two points are added the same cluster if the Euclidean
distance between them is smaller than the threshold θ. (⒋n their implementation, ⒊egger et al. set θ = 2 ×
cell size = 6 cm.) ⒈inally, all ⒎⒕⒐s rom the same cluster are added into a single-dimensional histogram, and this
histogram, together with the cluster’s width and depth, is used as a feature vector.

⒊egger et al. train AdaBoost, ⒕V⒏ and ⒔andom ⒈orest (Breiman, ⑴001) discriminative classi஁ers based on these
histogram of ⒎⒕⒐ features, which are then used to classiy unseen clusters into partial “human”/“non-human”
objects. These part-based classi஁cations are then merged using Euclidean clustering with the threshold θ set to
θ = 2 × slice height = 50 cm. Any connected component containing more than three clusters is considered as a
detected human.

3.1.2.2 Other approaches for human detection from depth data

Human detection using template matching/model ϒtting Xia et al. (⑴011) describes an approach in which
the humans are detected by ஁rst matching a two-dimensional head-and-shoulders template to the input depth
intensity image to obtain the candidate head regions, and then veriying those regions by ஁tting a three-dimensional

⑸Volumetric pixel.
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a) b) c) d) e) f)

⒈igure :⑵⑵ܫ ⒊uman detection steps in Xia et al.’s (⑴011) method. ⒋mage a) shows the noise ஁ltered depth image, image b)
shows the edges found using Canny edge detector, image c) shows the distance transform (DT) of this image, the areas that
satisy the chamfer distance threshold between the DT image and the head-and-shoulders template (shown in ஁gure (⑶⑵ܫ
are coloured in yellow in image d), the regions in the image that satisy the hemisphere ஁tting threshold (i.e. detected head
centers) are shown in yellow in image e), and the human contours obtained using a region growing algorithm with detected
head centers as seeds are shown in ஁gure f). Adapted rom Xia et al. (⑴011).

hemisphere to the depth image. Ater obtaining the head regions, the contours of the whole human body are
extracted using a region growing method⑹.

⒋n particular, Xia et al.’s (⑴011) method works as follows:

ܩ ⒉iven the input depth array, the nearest neighbour interpolation method is used to ஁ll the missing depth
data (due to occlusions, depth shadows, out-of-range objects, etc). Ater removing the missing data, the
4× 4 median ஁lter is used to remove speckle and impulse noise.

ܪ Canny edge detector (Canny, 1⑻⑺⑸) is used to ஁nd the edges in the ஁ltered depth array as illustrated in part
b) of ஁gure ,⑵⑵ܫ and the multi-resolution edge image pyramid is generated rom the original edge image
using the subsampling rate of ܭ⑹.0

ܫ The distance transform (DT) for each of the edge images in the pyramid is calculated, as shown in part c)
of ஁gure .⑵⑵ܫ

ܬ A binary head-and-shoulders template shown in ஁gure ⑶⑵ܫ is translated over the DT image pyramid; if the
chamfer distance between the template and the DT image at a given location is smaller than a user-speci஁ed
threshold, the location is marked as a candidate head center. This is illustrated in part d) of ஁gure .⑵⑵ܫ

ܭ Assuming that a human head is present at each candidate location, the radius of the head r is approximated
based on the candidate location’s depth. This hypothesis of head’s presence at a candidate location is then
veri஁ed by extracting a circular part of the depth image (centred at the candidate location and with the
approximated radius r), and calculating the square error between this circular part and a hemisphere model,
shown in ஁gure .⑷⑵ܫ ⒋f the square error exceeds another user-speci஁ed threshold, the candidate location is
rejected. ⒋mage e) in ஁gure ⑵⑵ܫ shows the ஁nal head center predictions.

⒈igure :⑶⑵ܫ “⒊ead-and-shoulders” template used for can-
didate head detection in the distance transform image.
Taken rom Xia et al. (⑴011).

⒈igure :⑷⑵ܫ ⒊emisphere model used for candidate head
veri஁cation. Taken rom Xia et al. (⑴011).

⑹⒉rowing the region until the depth di஀erence between the neighbouring image locations exceeds a threshold.
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ܮ A region growing algorithm is applied, using the detected head centres as seeds. This allows the whole body
contours to be extracted, as shown in part f) of ஁gure .(⑵⑵ܫ

Human detection through clustering Basso et al. (⑴01⑴) proposes a clustering-based approach for people detec-
tion in ⒔⒉B-D data, which works in the following way:

ܩ ⒈irst of all, the input point cloud is subsampled by dividing the input volume into three-dimensional grid
of equal sized cells, and representing each cell with its centroid to improve the run-time performance of the
algorithm, and to reduce the dependencies between the point cloud density and distance rom the sensor (in
Basso et al.’s approach the cell size is set to 6 cm). The subsampling process is illustrated in parts a) and b)
of ஁gure .⑸⑵ܫ

ܪ ⒕econdly, the points on the ground plane are removed rom the point cloud. This is achieved by asking
the user to select three ஂoor points in the ⒔⒉B image, deriving the plane equation rom these points
and removing the points in the cloud which are within the threshold distance rom the plane (during the
initialization stage of the detector).

⒋n the subsequent stages, the equation of the ground plane is automatically re஁ned by detecting all the points
within a threshold rom the hypothetical ground plane, and ஁tting a new plane using the least square distance
optimization. The point cloud ater ground plane removal is shown in part c) of ஁gure .⑸⑵ܫ

ܫ Ater removing the ground plane, the remaining points are clustered based on their Euclidean distance. ⒋n
particular, if the distance between two points is smaller than a pre-set threshold, they are placed into the
same cluster.

ܬ The clusters are veri஁ed based on their geometrical properties: ஁rstly, the clusters that contain less than 30

or more than 600 points are rejected, as shown in part d) of ஁gure .⑸⑵ܫ ⒕econdly, the clusters that have the
height smaller than 1.4m or higher than 2.3m are rejected. ⒕imilarly, the clusters that are further than
6.5m away are rejected, since they would have too low point cloud density for reliable detection.

ܭ The remaining clusters (as shown in part e) of ஁gure (⑸⑵ܫ are classi஁ed as being occluded or non-occluded,
based on the positions of their bounding boxes (illustrated in ஁gure .(⑹⑵ܫ The human-likeness of non-
occluded clusters is then examined by classiying the ⒔⒉B image area corresponding to the cluster’s bounding
box with a ⒕V⒏ trained using ⒊⒑⒉ features. The clusters which are classi஁ed by the ⒕V⒏ as “non-human”
are rejected, the remaining clusters are classi஁ed as human detections.

a) b) c) d) e)

⒈igure :⑸⑵ܫ ⒊uman detection steps in Basso et al.’s (⑴01⑵) method. ⒋mage a) shows the original point cloud, image b) shows
the subsampled point cloud, image c) shows the point cloud ater ground plane removal, image d) shows the clusters which
contain between 30 and 600 points, and image e) shows the bounding boxes of the clusters that satisy the height and distance
constraints, overlaid over the original ⒔⒉B input image. The clusters which are veri஁ed by the ⒕V⒏ trained on ⒊⒑⒉ features
are considered as ஁nal human detections. Adapted rom Basso (⑴011).
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Cluster 1

Cluster 2

α
β

Sensor

⒈igure :⑹⑵ܫ ⒑cclusion evaluation criteria in Basso et al.’s (⑴01⑵) method. ⒕ince α > β, “Cluster ⑴” would be considered
occluded by “Cluster 1”. Adapted rom Basso (⑴011).

Multiple detector fusion ⒋n the people detection and tracking approach described by Choi et al. (⑴011), mul-
tiple ⒔⒉B-D data based detectors are combined into a probabilistic sampling-based ramework in the following
way.

⒎et I1∼t be the sequence of ⒔⒉B-D images in time instants 1, ..., t, and Zt = {Z0
t , ..., Z

k
t } be the set of human

head locations at time t, with each Zi
t given by a three-dimensional point (x, y, z). Using the sequential Bayes

formulation (Arulampalam et al., ⑴00⑴), the posterior probability ⒒r(Zt|I1∼t) can be expressed as

⒒r(Zt|I1∼t) =
⒒r(It|Zt, I1∼t−1)⒒r(Zt|I1∼t−1)

⒒r(It|I1∼t−1)

∝ ⒒r(It|Zt)⒒r(Zt|I1∼t−1)

= ⒒r(It|Zt)

∫
⒒r(Zt|Zt−1)⒒r(Zt−1|I1∼t−1)dZt−1 (Using Chapman-fiolmogorov eq.)

=
∏

i

⒒r(It|Zi
t)

∫ ∏

i

⒒r(Zi
t |Zi

t−1)⒒r(Zt−1|I1∼t−1)dZt−1. (Using target independence)

The motion prior ⒒r(Zi
t |Zi

t−1) for each target is modelled as a ⒉aussian distribution centred over Zt−1 (to ensure
motion smoothness), together with two binomial probabilities representing the possibilities of new target’s appear-
ance, and the likelihood of target’s persistence between time instants t and t − 1. The observation likelihood is
modelled using ⒒r(It|Zi

t) ∝ exp
(∑

j wjlj(It|Zi
t)
)
, where lj(·) is an individual detector log likelihood.

⒋n Choi et al.’s approach the following individual detectors are used:

ܩ Upper body and full body ⒊⒑⒉ detectors (lHOG), as described earlier,

ܪ Viola-⒌ones face detector (lface), as described earlier,

ܫ ⒕hape detector (lshape), which is based on the ⒊amming distance between the two-dimensional binary “head-
and-shoulders” shape and thresholded depth image in the target area,

ܬ ⒕kin detector (lsin), which checks what proportion of the pixels in the target area are within a “skin colour”
region in ⒊⒕V colour space,

ܭ ⒏otion detector (lmotion), which works by identiying the di஀erences between the point clouds in time instants
t and t− 1, projecting those points back into the image, and calculating the proportion of moving pixels in
the target area.

⒕ince the posterior at t− 1 time instant ( ⒒r(Zt−1|I1∼t−1)) is not tractable to be calculated exactly, the resulting
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posterior probability at time t is approximated as

⒒r(Zt|I1∼t) ∝
∏

i

⒒r(It|Zi
t)

N∑

r=1

⒒r(Zt|Z(r)
t−1),

where target position sets {Z(r)
t−1}Nr=1 are sampled rom ⒒r(Zt−1|I1∼t−1) distribution using reversible-jump⒏onte

Carlo ⒏arkov Chain (⒔⒌-⒏C⒏C, ⒍han et al. (⑴00⑶)) method (see Choi et al. for full details on the target proposal
⒏arkov Chain). This approach also enables tracking-by-detection.

To start the detection/tracking process, the initial target location set Z0 is approximated by removing the ஂoor
plane rom the initial point cloud (using the extrinsics of ⒔⒉B-D sensor w.r.t. robot), clustering the remaining
points and using the highest points rom each cluster as head location proposals. ⒑nly those proposals which are
between ⑵ܩ and ⑵ܪ metre distance rom the ground, are used as actual initialization parameters.

3.2 Obstacle avoidance

An autonomous robot photographer, just like any other autonomous mobile robot, needs to be able to navigate
in its environment without colliding with any obstacles that it encounters. Traditional sensors used for this task
include laser range, ultrasound, inrared sensors, stereo or monocular cameras, or various combinations of any of
the above. Each of those sensors have their individual limitations, as summarized by in table .1ܫ

⒕ensor ⒕peed Cost ⒒ower Density Accuracy Dimensions
⒋nrared sensor ring ⒈ast ⒎ow ⒎ow ⒎ow ⒎ow ⑴
Ultrasound sensor ring ⒈ast ⒏edium ⒎ow ⒎ow ⒏edium ⑴
⒎aser range ஁nder ⒕low ⒊igh ⒊igh ⒊igh ⒊igh ⑴
⒎⒋DA⒔ ⒕low ⒊igh ⒊igh ⒊igh ⒊igh ⑵
⒕ingle camera ⒈ast ⒎ow ⒎ow ⒊igh ⒎ow ⑵
⒏ultiple cameras ⒈ast ⒎ow ⒎ow ⒎ow ⒏edium ⑵
⒔⒉B-D sensor ⒈ast ⒎ow ⒎ow ⒊igh ⒏edium ⑵

Table :1ܫ A comparison of di஀erent sensors used for obstacle detection. Extended rom ⒒easley and Birch஁eld (⑴01⑵).

⒋nrared or ultrasonic sensors arranged in a ring-like formation around the robot can provide planar range readings
at a low cost, but the acquired distance values are sparse and not very accurate. ⒎aser range ஁nders can produce
much more accurate and dense planar range readings, but they consume a large amount of power and cost thousands
of dollars. When combined with spinning mirror systems, laser range ஁nders can also provide three dimensional
range scans (so-called ⒎⒋DA⒔ systems), but at the expense of decreased rame rate. ⒋n image-based obstacle avoid-
ance systems, the distances have to be inferred rom the image data, requiring either multi-camera rigs or robot’s
movement (exploiting the motion parallax). This requires solving the computationally-intensive correspondence
problems (spatial or temporal), and typically produces only sparse, image noise sensitive distance measures.

The active-light based ⒔⒉B-D sensors overcome most of these limitations, by providing real-time, dense, three
dimensional distance readings at a஀ordable prices⑺. ⒕ince these sensors can be used with both image- and depth-
based obstacle avoidance techniques, both types of methods are brieஂy surveyed below.

⑺⒏icrosot ⒍inect ⒔⒉B-D sensor costs under one hundred dollars at a time of writing this thesis.
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3.2.1 Survey of image-based obstacle avoidance methods

A large number of image-based methods have been proposed for mobile robot navigation and obstacle avoidance
(e.g. see surveys by Bonin-⒈ont et al. (⑴00⑺) or De⒕ouza and ⒍ak (⑴00⑴)). ⒐otable image-based approaches, which
do not rely on a prior map of the environment include the optical यow techniques, image qualitative characteristic
extraction methods and feature tracing based approaches (using the taxonomy of Bonin-⒈ont et al.), each of which
are described below.

Optical ϓow based methods ⒏ethods that rely on the optical ஂow try to detect the ground plane and the obstacles
above it rom the motion of spatial features in a sequence of images.

An example method for obstacle detection based on optical ஂow is described by ⒕antos-Victor and ⒕andini (1⑻⑻⑷).
⒋n their method they assume that the camera is facing the ஂat ground surface (on which the robot is moving) de஁ned
by the equation Z(x, y) = Z0

1−γx
x
fx

−γy
y
fy

, where fx, fy are the camera’s horizontal and vertical focal lengths and
Z0, γx, γy are the parameters of the plane (the distance along the optical axis, and slant/tilt respectively). Then,
rom the image brightness constancy equation for the optical ஂow (u ∂I

∂x
+ v ∂I

∂y
= −∂I

∂t
, where u ≈ ∂x

∂t
, v ≈ ∂y

∂t
)

they derive the normal ஂow equation for the planar surface in motion as
[
∂I

∂y
, x

∂I

∂y
, y

∂I

∂y
,
∂I

∂x
, x

∂I

∂x
, y

∂I

∂x

]
θ = −∂I

∂t
,

where the parameter vector θ = [v0, vx, vy, u0, ux, uy]
T is estimated using a recursive least squares approach.

Using the obtained parameters θ, the equation of the ground plane can be recovered (up to a scale factor) by
calculating γx = −vx

v0
fx and γy = −uy

u0
fy. (⒕antos-Victor and ⒕andini also provide a way to estimate the equation

of the ground plane even if the intrinsic parameters of the camera fx, fy are not known.)

⒈inally, given the equation of the ground plane the obstacles can be detected by observing that for a translational
motion, the points on the ground surface should have the same ஂow vectors (ater re-projecting the ஂow ஁eld onto
this estimated ground plane). ⒒oints above or below the ground should then have di஀erent magnitude or orientation
ஂow vectors, and thus can be identi஁ed as obstacles, as illustrated in ஁gure .⑺⑵ܫ

a) b) c)

⒈igure :⑺⑵ܫ ⒑ptical ஂow-based obstacle detection: image a) shows the normal ஂow ஁eld, image b) shows the ஂow ஁eld
re-projected onto the ground plane, image c) shows the detected obstacles by looking for variations in otherwise constant ஂow
஁eld. Adapted rom ⒕antos-Victor and ⒕andini (1⑻⑻⑷).

⒋n a more recent approach by Braillon et al. (⑴00⑸), optical ஂow based obstacle detection is combined with stereo
obstacle detection. ⒈or obstacle detection rom the stereo information, a calibrated two-camera rig is pointed
towards the ground plane, and the ⑵D point cloud obtained rom the stereo image pairs is used to estimate the
ground plane equation by ஁tting a plane to the obtained point cloud using the ⒎east ⒏edian ⒕quares method
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(under the same ஂat ground assumption). Then the occupancy grid Cs(x, y) (containing obstacles and ree space,
as illustrated in part c) of ஁gure (⑻⑵ܫ can be generated by thresholding the shortest distance between each point
in the obtained cloud and the estimated ground plane.

⒈or the obstacle detection using optical ஂow (based on the image input rom one of the cameras in the stereo
pair), an odometry-based approach is used. ⒋n particular, the theoretical optical ஂow is generated, which should be
observed on an estimated ground plane for a given linear and angular velocity of the robot. Then this generated
optical ஂow ஁eld is matched with the actual optical ஂow obtained between two consecutive image input rames It
and It+1, calculating the image of squares of di஀erences between the model and the observed ஂow I∆, as illustrated
in part b) of ஁gure .⑻⑵ܫ The discrepancies between the observations and the model are assumed to have occurred
due to the obstacles in robot’s path.

Due to the fact that a single pixel in the image could have been generated by any three-dimensional real-world point
on the pixel’s projective line, image I∆ actually generates a pyramid Co(x, y, z) of occupied points in ⑵D space,
constructed by projecting each point in I∆ onto the ground plane estimated rom the stereo data. To collapse
this pyramid into the two dimensional occupancy grid Co(x, y), Braillon et al. use the following probabilistic
formulation:

Co(x, y) = max
z

(
⒒r(z)Co(x, y, z) + (1− ⒒r(z))1

2

)
,

where ⒒r(z) represents a prior probability for an obstacle observed at height z to extend all the way to the ground
ஂoor (constructed to decay with increasing height). Ater this projection, the occupancy map obtained rom I∆ is
shown in part d) of ஁gure .⑻⑵ܫ ⒈inally, the obtained occupancy maps rom stereo and optical ஂow data are merged,
yielding the ஁nal occupancy map illustrated in part e) of ஁gure .⑻⑵ܫ

a) b) c) d) e)

⒈igure :⑻⑵ܫ ⒑bstacle detection rom optical ஂow and stereo data in Braillon et al.’s (⑴00⑸) method. ⒋mage a) shows the
original input image for one of the cameras in the stereo pair, image b) shows the square of di஀erences image I∆ between the
odometry-based optical ஂow model and the actual optical ஂow obtained rom two input rames (ignoring di஀erences above the
horizon line), image c) shows the occupancy grid Cs(x, y) calculated rom the point cloud obtained rom the stereo input
data, image d) shows I∆ projected and collapsed into the occupancy grid Co(x, y) (as described in the text), and image e)
shows the merged occupancy grids Cs and Co. Adapted rom Braillon et al. (⑴00⑸).

Qualitative feature extraction ⒋n contrast to quantitative approaches, which try to calculate accurate numerical
data like distances to obstacles or their coordinates in the world plane, the qualitative approaches try to extract
characteristic features rom the visual data in order to distinguish between ree and occupied space.

An early example of such system is described by ⒎origo et al. (1⑻⑻⑹). Their approach is based on two assumptions:
that the ground plane is ஂat, and that the boundaries between the obstacles and the ground surface are visible in the
image. Then ⒎origo et al. use detected edges and normalized ⒔⒉B/⒊⒕V histograms to detect obstacle boundaries
in the following way.

⒈irst of all, the input image is scanned rom the bottom towards the top in vertical slices, assembling edge/⒔⒉-
B/⒊⒕V feature histograms in each window. The edge feature histogram is calculated by simply assembling the
gradient magnitudes in a given window into a histogram. ⒕imilarly, the ⒔⒉B/⒊⒕V-based feature histograms are
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built rom the red and green colour intensities/hue and saturation values within the window. The lowest win-
dow in each slice is assumed to be obstacle ree; then all higher windows which have suஃciently di஀erent feature
histograms are assumed to contain obstacles (as illustrated in ஁gure .(0⑶ܫ
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a) b) c)

⒈igure :0⑶ܫ ⒊istogram-based obstacle detection in ⒎origo et al.’s (1⑻⑻⑹) method. ⒋mage a) shows the 64 × 64 pixel size
input for the algorithm together with two windows, the lowest of which is assumed to be obstacle ree. ⒋mages b) and c)
show the ⑵⑴-bin histograms of red and green pixel intensities under each window; the window would be declared to contain
obstacles if the cumulative di஀erence between the histograms exceeds a pre-set threshold. Adapted rom ⒎origo et al. (1⑻⑻⑹).

Another qualitative feature extraction based method is described by ⒏aja et al. (⑴000). Their approach (based on
the same assumptions) is even simpler. ⒈irst of all, an input grayscale image I is binarized using I(x, y) > µ− σ
threshold, where µ is the arithmetic mean and σ is the standard deviation of the intensities in the image. Then the
binarized image Ĩ(x, y) is scanned bottom-to-top using one pixel width vertical stripes, and the earliest occurrence
of the pixel’s intensity under the threshold is recorded for each stripe (i.e.H(x) = miny{y | Ĩ(x, y) = 0}).

The robot chooses the direction for navigation by calculating the largest ree-space area in the binarized image, i.e.
the direction corresponding to the horizontal coordinate x̂ = argmaxx

∑x+δ/2
x′=x−δ/2H(x′), where δ is the robot’s

width in pixels.

Feature tracking approaches ⒋n the feature tracking approaches the robust elements of the image (lines, corners,
object outlines) are used to estimate the location of the ground plane in the input image rom the homographies
between feature points.

An example obstacle avoidance method based on feature tracking is described by ⒒ears and Bojian (⑴001). ⒋n
their approach, ⒊arris and ⒕tephens (1⑻⑺⑺) corner detector is used to extract the corner points in the image. These
points are tracked for n rames using a ⒍alman ஁lter, and a homography (plane-to-plane projection)H is calculated
between a limited set of corner points rom rames 1 and n. The calculated homography H can then be used to
check if other corner points lie on the same plane; the homography that veri஁es the largest number of corner
associations is assumed to be mapping corner points between the ground planes in both rames. This allows the
corner points on the ground plane (veri஁ed using H) to be grouped together in patches, and the colour model of
the ground plane to be extracted rom the image area under those patches. At this point, the whole image can be
classi஁ed into “ground plane”/“non ground plane” regions based on their colour, as illustrated in ஁gure .1⑶ܫ

Ater segmenting the image into “ground plane”/“non ground plane” regions, ⒒ears and Bojian apply a modi஁ed
potential ஁eld method (Borenstein and ⒍oren, 1⑻⑺⑻) to generate a ஁ctional force that provides the direction and
speed instructions for the obstacle avoiding robot. ⒋n particular, they cast imaginary rays rom the bottom center
of the image to the edges of the segmented ground plane region, and generate the force vectors in the opposite
directions (i.e. towards the bottom center of the image), which have the magnitudes inversely proportional to the
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a) b)

⒈igure :1⑶ܫ ⒉round plane segmentation in ⒒ears and Bojian’s (⑴001) method, based on calculation of the homography that
relates ground planes in temporally separated rames. ⒋mage a) shows the extracted corner points on the ground plane grouped
into a patch, image b) shows the extracted ground plane region, based on its colour similarity to the colour of the patch in
image a). Adapted rom ⒒ears and Bojian (⑴001).

length of the cast rays. Adding these force vectors together and including a forward-pointing driving force produces
the resulting direction vector.

A number of similar systems based on homography calculation rom the feature points have also been proposed
(e.g. see the descriptions by Dao et al. (⑴00⑷) or ⒜hou and ⒎i (⑴00⑸)).

3.2.2 Survey of depth-based obstacle avoidance methods

Approaches to depth based obstacle avoidance in unstructured environment can be split into two categories, based
on their need for the structural assumption of the sensor’s position. ⒏ethods in the ஁rst category use the structural
knowledge about the sensor’s position/tilt angle (with respect to the rest of the robot) to detect the ground plane
in the input data. ⒏ethods that do not make this assumption detect the ground plane using only the input rom
the ⒔⒉B-D sensor.

An example of the latter approach (involving no prior structural knowledge about the sensor’s position) was proposed
by ⒐guyen (⑴01⑴). ⒋n particular, ⒐guyen describes a method that detects the ground plane solely rom the depth
input in the following way. ⒈irst of all, the input point cloud is subsampled using the voxel ஁lter (as described in
section ,(⑴ܩܫ and the points that are closer than 0.5m or further than 1.4m are eliminated.

The remaining points are used as inputs for the ⒔andom ⒕ample Consensus (⒔A⒐⒕AC, ⒈ischler and Bolles (1⑻⑺1))

a) b) c) d)

⒈igure :⑴⑶ܫ ⒑bstacle detection process in the approach by ⒐guyen (⑴01⑴). ⒋mage a) shows the original input ⒔⒉B point
cloud, image b) shows the point cloud ater the voxel ஁ltering, and image c) shows the depth cloud ater removing points with
distances > 1.4m or < 0.5m. ⒋mage d) shows the ஁nal results ater the ground plane detection using ⒔A⒐⒕AC algorithm
(shown in blue) and obstacle clustering based on their Euclidean distance (shown as green and red clusters). Adapted rom
⒐guyen (⑴01⑴).
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algorithm, which is used to ஁nd the equation of the dominant plane (assumed to be the ground plane). Essentially,
this procedure works by sampling three non-collinear points rom the remaining point cloud (which uniquely
de஁ne an equation of the plane), counting the number of points further than a threshold distance rom the de஁ned
plane and repeating the process if this number is too large (or for a ஁xed number of iterations).

When the ⒔A⒐⒕AC process terminates, the points belonging to the ஂoor plane are discarded and the remaining
points are grouped using Euclidean clustering; the obtained clusters are returned as detected obstacles. This process
is illustrated in ஁gure .⑴⑶ܫ

⒊owever, the majority of obstacle detection in ⒔⒉B-D data methods use a priori knowledge about the position and
pitch of the sensor with respect to the robot’s base. Examples of such methods are presented by ⒏ojtaheǳadeh
(⑴011), ⒊olz et al. (⑴011) and ⒒easley and Birch஁eld (⑴01⑵), each of which is brieஂy described below.

⒋n ⒏ojtaheǳadeh’s (⑴011) approach, the prior knowledge about the sensor’s position and pitch angle is exploited
by rotating and translating the input point cloud to the robot’s coordinate rame. Then all the points with the
heights outside the minimum and the maximum height boundaries of the robot are removed, while the remaining
points are projected into a ⑴D obstacle map, as illustrated in ஁gure .⑵⑶ܫ

a) b) c) d)

⒈igure :⑵⑶ܫ ⒑bstacle detection process in ⒏ojtaheǳadeh’s (⑴011) approach. ⒋mages a) and b) show the original ⒔⒉B/depth
input images, image c) shows the obtained point cloud, and image d) shows the obstacle map, obtained by removing the points
outside the robot’s height (including the ஂoor plane) and projecting the remaining points vertically into two dimensions. The
red circle in image d) shows the robot’s location. Adapted rom ⒏ojtaheǳadeh (⑴011).

⒋n the alternative ⒊olz et al.’s (⑴01⑴) approach, the local surface normals are ஁rst calculated rom the input point
cloud (as described in section .⑴ܩܫ Then the calculated surface normals are transformed into the base coordinate
rame of the robot, using the knowledge about the sensor’s position w.r.t. to the robot’s base.

Aterwards, the transformed points are clustered based on their (transformed) normals n = [nx, ny, nz]
T by ஁rst

putting all the points with normals |nx−x| < δ, |ny−y| < δ, |nz−z| < δ into the same clusterC(x,y,z), and then
merging the neighbouring clusters (with similar normal orientations) until suஃciently large clusters are obtained.
The resulting clusters represent the sets of planes with similar surface orientation, but the planes themselves might
be spatially separated (e.g. see the red cluster in part b) of ஁gure ⑶⑶ܫ composed of multiple planes).

To mitigate this problem, the average normal vectors ni are calculated for each cluster Ci, and the distances rom
the origin to a plane de஁ned by ni and each point xi ∈ Ci are calculated. Clearly, this distance is the same for the
points on the same plane, hence the histograms of these distances are assembled and points rom the same bin are
put into the same cluster. Ater obtaining the ஁nal clusters, the points in a horizontal plane nz ≈ 1 with z ≈ 0

are considered as obstacle-ree points on the ground plane (shown in gray in part c) of ஁gure .(⑶⑶ܫ

⒋n another example of obstacle detection rom depth data, ⒒easley and Birch஁eld (⑴01⑵) use an identical approach
to ⒏ojtaheǳadeh (⑴011) to obtain the initial obstacle map. ⒊owever, to further improve the obstacle detection,
⒒easley and Birch஁eld (⑴01⑵) propose a way to overcome the limitations of ⒍inect in high specularity parts of the
scene.
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a) b) c)

⒈igure :⑶⑶ܫ ⒑bstacle detection based on point cloud clustering in ⒊olz et al.’s (⑴01⑴) approach. ⒋mage a) shows the original
⒔⒉B input, image b) shows three clusters (red, green and blue) obtained ater clustering the input points based on their local
surface normals, and image c) shows the eight ஁nal plane clusters obtained ater point re-clustering based on the plane-to-
origin distance, as explained in the text. The obtained obstacle-ree ground plane segment is shown in gray. Adapted rom
⒊olz et al. (⑴011).

⒋n particular, given a pixel with an invalid depth reading, its neighbours in the depth image are examined. ⒋f any
of the neighbours lie on the ஂoor plane (approximated as points with z < 5 cm) then that ஂoor point is marked
as an obstacle in the ⑴D obstacle map (which semantically corresponds to placing an in஁nitely tall obstacle at that
ஂoor point). This improvement is illustrated in ஁gure .⑷⑶ܫ

a) b) c) d)

⒈igure :⑷⑶ܫ ⒋mprovements to reஂective object detection by ⒍inect. ⒋mage a) shows the original depth input, image b) shows
the ⒔B⒉ input with the ஂoor segment coloured in green. ⒐otice that the table with metallic surface have no depth readings
in image a) (coloured in black). ⒋mage c) shows the obstacle map obtained by ignoring invalid depth readings (with the table
area marked as a red rectangle), while image d) shows the obstacle map obtained ater specular surface marking as described
in text. Adapted rom ⒒easley and Birch஁eld (⑴01⑵).

Another improvement proposed by ⒒easley and Birch஁eld relates to the loss of depth data when the objects are too
close to the sensor (this can occur due to moving objects in the scene that suddenly appear in ront of the sensor, or
when the robot turns away rom one obstacle and starts facing another). This problem is mitigated by examining
the proportion of pixels in the input depth image that do not have valid depth readings. ⒋f this proportion exceeds
40% then the robot proposed by ⒒easley and Birch஁eld starts turning continuously in-place until the proportion
of valid pixels increases.

3.3 Proposed methods for the use in an autonomous robot photographer

The human detection/tracking and obstacle detection/avoidance methods for the use by an autonomous robot pho-
tographer are selected mostly based on their computational eஃciency. This condition is imposed by the simplicity
of the on-board computer in the robot (⒋ntel Atom ⒐⑴⑺00 ⑸ܩ ⒉⒊z C⒒U, 1 ⒉B ⒔A⒏, no dedicated ⒉⒒U) and
power constraints (the use of complicated algorithms requires more power, which quicker drains the mobile robot’s
battery).



3.3. PROPOSED ffiETHODS FOR THE USE IN AN AUTONOffiOUS ROBOT PHOTOGRAPHER ⑷0

The feasibility for a given method to be implemented within the project’s timerame is also taken into consideration,
thereby rejecting methods that require training datasets which are not publicly available, or need training processes
which are time or computing resources intensive.

The use of these criteria is strengthened by the assumption that even simple ⒔⒉B-D human/obstacle detection
algorithms should outperform similar image-based algorithms due to the richness of ⒔⒉B-D data, hence by pro-
viding a highly modular and decoupled implementation of the robot’s control system the incorporation of more
sophisticated human detection algorithms could be let for the future research.

3.3.1 Proposed human subject detection method

With the above considerations in mind, a knowledge-based head detection algorithm by ⒉arstka and ⒒eters (⑴011) is
chosen and extended to cope with multiple people presence in the image. To improve the head detection results, two
skin detectors are implemented: a Bayesian skin detector by ⒌ones and ⒔ehg (⑴00⑴), and an adaptive skin detector
based on a logistic regression classi஁er with a ⒉aussian kernel, and trained on an on-line skin model obtained rom
the face regions detected using Viola and ⒌ones (⑴001) detector. ⒈inally, to exploit the spatial locality of human
heads over a sequence of rames, a depth-based extension of the continuously-adaptive mean-shit algorithm by
Bradski (1⑻⑻⑺) is proposed. Each of these methods are further explained below, starting with the head localization
algorithm of ⒉arstka and ⒒eters (⑴011).

3.3.1.1 Head localization from depth images using Garstka and Peters (2011) approach

⒉arstka and ⒒eters (⑴011) describe a fast, knowledge-based human head localization⑻ method. ⒋t consists of three
main steps: i) depth shadow elimination, ii) depth image smoothing, and iii) head localization through local
minima detection and veri஁cation of surrounding geometrical features, based on prior knowledge about human
head sizes. These steps are described in more detail below.

Depth shadow elimination Due to the fact that ⒋⒔ projector is placed 2.5 cm to the right of the ⒋⒔ camera in
⒍inect sensor, the depth shadows (places visible by ⒋⒔ camera which do not have a projected ⒋⒔ pattern) always
appear on the let side of a convex object (as illustrated in ஁gure .(⑸⑶ܫ

Kinect sensor

⒈igure :⑸⑶ܫ ⒍inect depth shadows for the convex objects. ⒎ight blue polygon shows the area visible rom the ⒋⒔ camera’s
point of view, light red polygon shows the projected ⒋⒔ pattern. Blue lines indicate the areas on the object surfaces visible by
the ⒋⒔ camera, red lines indicate the areas which have a projected ⒋⒔ pattern. ⒐ote that depth shadows always appear on the
let side of convex objects. Adapted rom ⒜abarauskas (⑴01⑴).

⑻Borrowing the wording rom ⒛ang et al. (⑴00⑴), head localization task can be de஁ned as the head detection task under the assumption
that an input image contains exactly one head. ⒋n other words, it is the task of determining the location of exactly one viewer’s head in the
input image.
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⒕ince human heads are indeed convex, ⒉arstka and ⒒eters propose to eliminate the depth shadows by scanning the
image one horizontal line at a time, top-to-bottom, and replacing every unknown depth value with the last known
one. This process is illustrated in part c) of ஁gure .⑺⑶ܫ

Depth image smoothing Depth images can contain noise due to inaccurate measure of disparities in the correla-
tion algorithm, external ⒋⒔ radiation (e.g. sunlight), high specularity object surfaces and so on. ⒕ince the subsequent
detection step will involve treating every local horizontal minimum point as a potential point on a vertical head axis,
it is highly prone to noise. To mitigate this problem, ⒉arstka and ⒒eters propose to use the integral image repre-
sentation for fast smoothing. ⒋n particular, given the integral image Ĩ and the smoothing radius r, the smoothed
depth value Ir(x, y) can be calculated using

Ir(x, y) =
Ĩ(x+ r, y + r)− Ĩ(x− r, y + r)− Ĩ(x+ r, y − r) + Ĩ(x− r, y − r)

(2r + 1)2
. (⑸ܫ)

The input depth images blurred using radii r ∈ {2, 4, 8} are shown in ஁gure .⑹⑶ܫ

a) ⒋nput depth image b) r = 2 c) r = 4 d) r = 8

⒈igure :⑹⑶ܫ Depth image blurring using integral image approach.

Head localization ⒋n order to eஃciently localize the head, ⒉arstka and ⒒eters start by making an assumption that
the adult head has an approximate size of 20 cm× 15 cm× 25 cm (D×W ×H). ⒕ince the exact head’s orientation
is unclear, ⒉arstka and ⒒eters assume the inner depth and width bound of 10 cm and the outer depth and width
bound of 25 cm.

⒉iven an object with width w and height h, at a distance d rom the ⒍inect sensor, the width and height that the
object occupies on the screen (pw(d) and ph(d) respectively) can be calculated using

(pw(d), ph(d)) =

(
w × rw

d× 2 tan fw
2

,
h× rh

d× 2 tan fh
2

)
, (⑹ܫ)

where (fw, fh) are the horizontal/vertical ஁elds-of-view (⒈⒑V) of the depth camera, and rw × rh is the resolution
of the depth image. ⒉arstka and ⒒eters empirically measure a horizontal ⒈⒑V of 61.7◦, which nearly corresponds
to the ⒒rime⒕ense ⒒⒕10⑺0 ⒕oC reference design ,1⑺0ܩ which states 58◦ horizontal and 45◦ vertical ⒈⒑Vs.

Using equation ,⑹ܫ the inner and outer bound pixel distances at distance d (in a V⒉A resolution depth image) can
be expressed as

bi(d) =
10 cm× 640 px
d× 2 tan 58◦

2

≈ 5, 773

d
px,

bo(d) =
25 cm× 640 px
d× 2 tan 58◦

2

≈ 14, 432

d
px.
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a) b) c)

d) e) f)

⒈igure :⑺⑶ܫ ⒊ead detection steps in ⒉arstka and ⒒eters’ (⑴011) method. ⒋mages a) and b) show the original ⒔⒉B/depth
images obtained rom ⒍inect sensor, with missing depth data annotated in purple, image c) shows the depth image ater
஁ltering depth shadows, image d) shows the result of depth blurring using the blur ஁lter size r = 4, and images e),f)
illustrate the detected head’s inner bounds (shown in red), outer bounds (shown in blue) and the vertical head axis (shown in
white).

⒉iven these inner/outer bound pixel distances, the head location can be determined in the following way:

ܩ The depth image is scanned top-to-bottom, one horizontal line at a time.

ܪ ⒈or each horizontal line y, a local minimum pixel x is found such that the depth di஀erences between this
pixel and the depth values within the inner bounds are smaller than 10 cm, and the depth di஀erences between
this pixel and the depth values at the outer bounds are larger than 20 cm.

⒏ore formally, x has to satisy the following conditions:

d(x, y) < d(x± 1, y),

∀∆x ∈
{
1, ...,

bi(d(x, y))

2

}
: d(x±∆x, y)− d(x, y) < 10 cm,

d(x± bo(d(x, y))

2
, y)− d(x, y) > 20 cm.

(⑺ܫ)

ܫ ⒋n order to obtain accurate horizontal boundaries for the candidate head, the positions where the depth
di஀erence exceeds 20 cm are found on each side of x (named the let/right lateral gradients of x and denoted
xl and xr respectively).

⒋n particular, xl and xr must satisy the following constraints:

∀g ∈ {l, r} : d(xg, y)− d(x, y) ≤ 20 cm,
d(xl − 1, y)− d(x, y) > 20 cm,
d(xr + 1, y)− d(x, y) > 20 cm.

(⑻ܫ)
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Then the arithmetic mean of let and right lateral gradients x(y) = xl(y)+xr(y)
2 is stored as a potential point

on the vertical head axis (illustrated in parts e) and f) of ஁gure .(⑺⑶ܫ

ܬ ⒕ince ⒉arstka and ⒒eters assume the head height of at least 25 cm, a number of subsequent lines must satisy
the constraints rom equation .(⑺ܫ) The average depth of the points found in the last n lines can be calculated
as

d =
1

n

n−1∑

i=0

d(x(y − i), y − i).

Then the required number of lines satisying the equation (⑺ܫ) can be obtained rom equation (⑹ܫ) as

nmax =
25, cm× 480 px
d× 2 tan 45◦

2

≈ 14, 485

d
.

ܭ ⒋f at least nmax lines satisying the equation (⑺ܫ) are found while scanning the horizontal line y, then the
head detection is triggered and the position of the head center (x̃, ỹ) is returned, where

(x̃, ỹ) =

(
1

nmax

nmax−1∑

i=0

x(y − i), y − nmax
2

)
.

3.3.1.2 Multiple people detection using an extension of Garstka and Peters (2011) method

⒕ince a photographer robot needs to be able to detect multiple people in its environment at the same time, an
extension to ⒉arstka and ⒒eters’ (⑴011) method is proposed to cope with multiple people detection.

The extended method still scans through a blurred and depth-shadow-஁ltered depth image one horizontal line at
a time, rom top to bottom. ⒊owever, instead of keeping a single potential vertical head axis, a set of vertical head
axes {H1, ..., Hk} is constructed. Each head axis is represented by Hi =

(
di, (X,Y )i

)
, where di is the average

candidate head distance rom the sensor, and (x, y) ∈ (X,Y )i are the image points on the vertical axis.

When a new arithmetic mean of let and right lateral gradients x(y) is calculated (step ⑵ of the original algorithm),
the extended method searches for the head axis Hj s.t. the last added point (x′, y′) ∈ (X,Y )j is within 5 cm
distance rom the point (x, y).

⒏ore speci஁cally, let wd(p) and hd(p) be the width and height in centimetres of an object which occupies p pixels
in the image while being at a distance d rom the sensor. ⒋nverting the equation ,(⑹ܫ) these measures can be
expressed as

(wd(p), hd(p)) =

(
p× d× 2 tan fw

2

rw
,
p× d× 2 tan fh

2

rh

)
. (10ܫ)

⒈urthermore, let d be the depth of pixel (x(y), y). Then the 5 cm distance constraint described above can be
expressed as

√(
wd(x(y))− wdj

(x′)
)2

+
(
hd(y)− hdj (y′)

)2
+
(
d− dj

)2
< 5 cm. (11ܫ)

⒋f the pixel (x(y), y) satis஁es the above constraint then (X,Y )j is updated by adding the point (x(y), y), and the
average head distance dj is recalculated.
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A vertical head axis Hi is classi஁ed as a detected head if it is closer than ⑷ meters, is between 20 cm and 30 cm
long, and is rotated by less than 35◦ rom Oy axis in the Cartesian coordinate system. These constraints can be
expressed using simple geometry in the manner similar to the above.

A few examples of multiple head detection using this method are shown in ஁gure .⑻⑶ܫ

⒈igure :⑻⑶ܫ ⒏ultiple head detection examples using the proposed extension of ⒉arstka and ⒒eters’ method.

3.3.1.3 RGB data based improvements to human subject detection

The head detection technique introduced above is very simple, and while it does not produce many false negatives
(under the upright human orientation assumption), it oten classi஁es other objects as human heads. ⒋n order to
reduce the false positive count without too severely compromising the detection rate, a technique with orthogonal
failure modes is required.

The most natural way of detecting human subjects rom the ⒔⒉B data would be to perform human/face detection.
⒊owever, humans might not be fully visible in ⒍inect’s ஁eld of view, or might not be facing the camera. ⒕ince the
event photographer robot should be capable of taking both rontal and pro஁le face pictures, multiple face detector
cascades would likely have to be used, using a signi஁cant amount of computational complexity budget for a mobile
robot.

To keep the complexity low and still reduce the false positive rate of the extended head detection method, skin
detection in ⒔⒉B image is used. ⒏ore speci஁cally, ater detecting a candidate head region using the method
described above, the amount of skin-colour pixels in the corresponding ⒔⒉B image region is examined. ⒋f the area
occupied by the skin is under a pre-set threshold, the candidate head is rejected.

To perform this task, two skin detection methods are explored: a Bayesian classi஁er trained o஀-line on a very large
scale skin/non-skin image dataset, and an on-line skin detector trained using skin histograms obtained rom a
small set of face detections using Viola and ⒌ones (⑴001) detector. Both of these methods are brieஂy explained
below.

Passive skin-detection using a Bayesian classiϒer As described by ⒈leck et al. (1⑻⑻⑸), the human skin colour
is tightly clustered in the colour space, since the human skin hues have a very restricted range (the hue is mostly
induced by yellow/brown colour melanin and red colour hemoglobin in blood), and is not very strongly saturated.
This indicates that even simple classi஁ers can achieve good performance. This is veri஁ed empirically in the anal-
ysis performed by ⒌ones and ⒔ehg (⑴00⑴), where they have discovered that a histogram-based Bayesian classi஁er
outperforms a more sophisticated ⒉aussian ⒏ixtures ⒏odel (⒉⒏⒏) when trained on a very large scale dataset
(containing nearly a billion pixels, each hand-labelled as skin or non-skin).
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Because of these reasons, a histogram-based Bayesian classi஁er similar to ⒌ones and ⒔ehg’s is implemented and
trained for the use in a robot photographer. ⒕ince the skin colour classi஁cation performance is largely independent
of the colour space used as described by ⒒hung et al. (⑴00⑷)10, ⒔⒉B histograms are used for the classi஁er’s training
since the colour input rom the ⒍inect sensor (used for the robot) is provided in the ⒔⒉B format, thereby avoiding
unnecessary format conversions.

⒉iven an input pixel with speci஁c R = r, G = g and B = b values (in the equations below shortened as rgb), the
Bayesian classi஁er models the probabilities ⒒r(sin|rgb) and ⒒r(¬sin|rgb) as

⒒r(sin|rgb) = ⒒r(rgb|sin)⒒r(sin)
⒒r(rgb) ,

⒒r(¬sin|rgb) = ⒒r(rgb|¬sin)⒒r(¬sin)
⒒r(rgb) .

which allows the posterior ratio to be expressed as

⒒r(sin|rgb)
⒒r(¬sin|rgb)︸ ︷︷ ︸
posterior ratio

=
⒒r(rgb|sin)
⒒r(rgb|¬sin)︸ ︷︷ ︸
likelihood ratio

⒒r(sin)
⒒r(¬sin)︸ ︷︷ ︸
prior ratio

. (⑴1ܫ)

Then, the likelihood ratio can be used to classiy a given rgb pixel in a probabilistically-sound ramework (i.e. based
on ⒒r(sin|rgb) ≥? ⒒r(¬sin|rgb)) using the following observation:

⒒r(sin|rgb) ≥ ⒒r(¬sin|rgb)⇔

⒒r(sin|rgb)
⒒r(¬sin|rgb) ≥ 1⇔

⒒r(rgb|sin)⒒r(sin)
⒒r(rgb|¬sin)⒒r(¬sin) ≥ 1⇔

⒒r(rgb|sin)
⒒r(rgb|¬sin) ≥ θ,

where θ = ⒒r(¬sin)
⒒r(sin) . Another way of interpreting θ is as a threshold that controls the trade-o஀ between detec-

tion/misclassi஁cation rates which can either be set empirically or learned rom a held-out set.

The maximum likelihood (⒏⒎E) estimates for the class-conditional likelihood probabilities ⒒r(rgb|sin) and
⒒r(rgb|¬sin) can be obtained rom a supervised training set by creating skin and non-skin histograms rom all
tagged ⒔⒉B pixels (Hs and Hn respectively) and calculating

⒒r(rgb|sin) = Hs[r, g, b]

|Hs|
⒒r(rgb|¬sin) = Hn[r, g, b]

|Hn|
,

where H[r, g, b] is the pixel count in bin R = r, G = g, B = b of the histogram H , and |H| is the total pixel
count in histogram H .

An example colour input processed using this approach is shown in ஁gure .0⑷ܫ
10⒒hung et al. tested a histogram-based Bayesian classi஁er (similar to the one described in this section) using histograms obtained rom

⒔⒉B, ⒊⒕V, ⒛CbCr, and C⒋E-⒎ab colour spaces, and found that the performance of all classi஁ers was almost the same in all colour spaces.
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a) b) c)

⒈igure :0⑷ܫ ⒕ample output produced by the histogram-based Bayesian skin classi஁er (⒌ones and ⒔ehg, ⑴00⑴). ⒋mage a) shows
the original input, image b) shows ⒒r(sin|rgb)

⒒r(¬sin|rgb) where pixel’s probability corresponds to its intensity, and image c shows the
binary skin map obtained ater thresholding this probability ratio.

Active skin-detection using a kernel logistic regression classiϒer with Viola-Jones face detector Another pro-
posed approach for skin detection by an event photographer robot involves building a new skin model for each of
the new environments in which the robot is placed.

To achieve this, n faces are detected over a sequence of rames using the rontal and pro஁le face detectors by Viola
and ⒌ones (⑴001), described in section .1ܩܫ ⒈or each of the detected face rectangles, a binary mask is applied to
segment the image into face oval/background regions, and the pixel hue histograms are assembled in each of the
regions, as illustrated in ஁gure .1⑷ܫ Then these histograms are used as feature vectors in kernel logistic regression
(⒍⒎⒔) classi஁er training.

a) b) c)

⒈igure :1⑷ܫ ⒈eature extraction process for the skin kernel logistic regression classi஁er. ⒋mage a) shows the original ⒔⒉B
input, together with the face rectangle detected using Viola and ⒌ones’s (⑴001) method. ⒋mage b) shows the skin region
obtained by rescaling the face rectangle to 95% of its size, setting the width/height ratio to ⑴:⑵ and ஁tting an ellipse to the
resulting rectangle. ⒋mage c) shows the background region obtained by rescaling the face rectangle to 178% of its size and
subtracting rom it a face rectangle expanded to 133% of the initial size.

Ater the training, the depth-based head detections can be veri஁ed by applying the same oval binary mask to the
detected head rectangle, constructing a hue histogram h rom the face region and applying the ⒍⒎⒔ classi஁er to
obtain ⒒r(sin|h). The overall detection is then classi஁ed as a head if an only if ⒒r(sin|h) > θ, where θ is a
user-speci஁ed threshold.

⒉iven a normalized hue histogram h, the logistic regression classi஁er with the kernel K(x,y) = ϕ(x)Tϕ(y)

models the probability that this histogram belongs to a skin class as ⒒r(sin|h) = σ(wTϕ(h)), where w is
the weight vector, σ is a logistic sigmoid function and ϕ is a map rom the input space to the feature space.
The complementary probability ⒒r(¬sin|h) can be obtained by calculating ⒒r(¬sin|h) = 1 − ⒒r(sin|h) =

σ(−wTϕ(h)).
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⒊aving obtained n training examples D = {(h1, t1), ..., (hn, tn)} (where ti = 1 if the histogram is of the skin
region, and ti = 0 otherwise), the maximum-a-posteriori (⒏A⒒) estimate of the weight vector w can be obtained
in the following way:

w⒏A⒒ = argmax
w

⒒r(w|D)

= argmax
w

⒒r(D|w)⒒r(w).

⒎et L(w) = − log(⒒r(D|w)⒒r(w)), then equivalently w⒏A⒒ = argminw L(w). ⒏odelling the weight prior
⒒r(w) by a zero-mean ⒉aussian with variance λ2 and assuming the independence between individual training
examples allows L(w) to be rewritten as

L(w) = − log
[(
∏

i

⒒r(ti|hi)

)
exp
(−wTw

2λ2

)]

= −
∑

i

[
ti logσ(wTϕ(hi)) + (1− ti) log(1− σ(wTϕ(hi))

]
+

wTw

2λ2
.

By the ⒔epresenter Theorem (e.g. see ⒕chölkopf et al. (⑴001)), the weight vector can be expressed as a linear com-
bination of training examples projected into the feature space, i.e. w =

∑
i αiϕ(hi), for some α = (α1, ..., αn),

hence the negative log posterior of the weights L(w) can be rewritten as

L(α) = −
∑

i

[ti logσ(
∑

j αjK(hj ,hi)) + (1− ti) log(1− σ(
∑

j αjK(hj ,hi)))] +
∑

i,j αiαjK(hi,hj)

2λ2 .

(⑵1ܫ)

This quantity can be minimized using the resilient backpropagation (i⒔prop−, ⒔iedmiller (1⑻⑻⑶)) variant of the
gradient descent algorithm, fully described in the implementation section (see listing .(1ܫܪܬ

3.3.1.4 Computational performance improvements using a modiϒcation of the continuously adaptive mean-
shift tracker

To further reduce the computational complexity requirements of head/skin detection methods described above, a
depth-data based extension of the continuously adaptive mean-shit tracking algorithm (CA⒏⒕hit, Bradski (1⑻⑻⑺))
is employed to exploit the spatial locality of humans over a sequence of rames.

The original CA⒏⒕hit algorithm is largely based on the mean shit algorithm by ⒈ukunaga and ⒊ostetler (1⑻⑹⑷),
which provides a non-parametric way to climb the gradient of a given probability distribution to ஁nd the nearest
mode. ⒋n the extension by Bradski, the mode of the distribution and the size of search window are re-approximated
at each input rame, using the zeroth and ஁rst spatial horizontal/vertical moments of the probability distribution.
This allows the probability distribution of the tracked object’s location to be recomputed for each rame.

As shown in line 1⑴ in algorithm ,1ܩܫܫ the new search window location is obtained by calculating the center of
probability mass under the old search window at each iteration of the algorithm. ⒕imilarly, the size of the new
search window (line 1⑶) is obtained by observing that the zeroth moment approximates the area of the distribution
under the search window, hence by assuming a rectangular search window, a square root of the zeroth moment
approximates the length of a side of the window. The multiplicative constant (obtained empirically) ensures the
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Algorithm 3.3.1.1 A variant of the continuously-adaptive mean shit algorithm. ⒉iven the initial location of the
search window (x, y), the initial window’s size w × h and the convergence threshold θ, it positions the search
window at the nearest dominant mode of the probability distribution P .
C௺௹௿௴௹u௺u௾ly-A௯a௻௿௴v௰-⒏௰a௹-⒕௳௴௱௿(P, (x, y), w × h, θ)
1 // Initialize the search window center
⑴ (x′c, y

′
c)← (x, y)

⑵ repeat
⑶ for one or more iterations
⑷ (xc, yc)← (x′c, y

′
c)

⑸ // Find the 0th moment of P under the search window
⑹ M00 ←

∑

|x|≤w/2
|y|≤h/2

P (xc + x, yc + y)

⑺ // Find the 1st horizontal and vertical spatial moments
⑻ M10 ←

∑

|x|≤w/2
|y|≤h/2

xP (xc + x, yc + y)

10 M01 ←
∑

|x|≤w/2
|y|≤h/2

yP (xc + x, yc + y)

11 // Update the object’s center position
1⑴ (x′c, y

′
c)←

(
M10
M00

, M01
M00

)

1⑵ // Update the search window size
1⑶ w ← 2

√
M0,0

1⑷ h← 3
2w

1⑸ until ⒌a௮௮a௽௯-C௺௰௱௱௴௮௴௰௹௿(old search window, new search window) < θ

suஃcient expansion of the search window for CA⒏⒕hit algorithm to be able to track the whole object, instead of
“locking” onto the disconnected parts of the probability distribution.

⒈inally, the ⒌accard coeஃcient is used as a method’s convergence condition. ⒌accard’s coeஃcient measures the overlap
between two rectangles A and B, and is de஁ned as the ratio between the areas of their intersection and union, i.e.
⒌a௮௮a௽௯-C௺௰௱௱௴௮௴௰௹௿(A,B) = |A∩B|

|A∪B| .

While the original CA⒏⒕hit algorithm by Bradski (1⑻⑻⑺) uses the probability distribution obtained rom the
colour hue distribution in the image, in this project it is adapted to use the depth information. ⒋n particular, the
constraints in equation (⑺ܫ) that ⒉arstka and ⒒eters (⑴011) use to reject such local horizontal minima which could
not possibly lie on the vertical head axis, are used to de஁ne the following degenerate head probability:

⒒r(head |(x, y)) =
{
1, if constraints in equation (⑺ܫ) are satis஁ed for pixel (x, y),
0, otherwise.

(⑶1ܫ)

An example of this method in action is shown in ஁gure ,⑴⑷ܫ while the interaction between the detection/tracking
components is given in detail in section .⑴ܫܪܬ
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a) b) c) d)

⒈igure :⑴⑷ܫ ⒊ead tracking with extended CA⒏⒕hit algorithm using depth information. ⒋mages a)–d) show the tracked head
rectangle (coloured in yellow) overlaid over the input ⒔⒉B images in a sequence of rames. ⒒ixels with non-zero probability
in the head distribution rom equation (⑶1ܫ) are rendered in white.

3.3.2 Proposed obstacle avoidance method

The proposed obstacle avoidance approach for the event robot photographer is based on the work done by Boucher
(⑴01⑴). ⒋t was chosen due to its suitability for the random navigation mode (which the event photographer uses to
wander around in the environment) and its computational eஃciency.

This approach consists of three main steps: i) the prior knowledge about the sensor’s position and pitch angle is
used to translate and rotate the point cloud s.t. the ஂoor plane is described by the equation z ≈ 0 (under the ஂat
ஂoor assumption), ii) the region of interest in ront of the robot is cropped out rom the transformed point cloud,
and iii) the robot is navigated away rom the centroid of remaining points, if there are any. These steps, together
with the proposed extensions, are detailed below.

⒎et D = {xi}i=1,...,n be the depth point cloud obtained rom the ⒔⒉B-D sensor, where each xi =

[xi, yi, zi]
T .

As a preprocessing step, this depth point cloud is subsampled using a voxel grid ஁lter, to reduce the sensor’s noise,
and therefore the computational complexity of the subsequent steps, in the following way. ⒎et δ be the length of
a single cell’s side in the subsampling grid. Then the subsampled point cloud D is composed of the centroids of
the points in δ-sized cells, i.e.

D =





1

|Cx,y,z|
∑

x∈Cx,y,z

x

∣∣∣∣x ∈
{
1, ...,

W

δ

}
, y ∈

{
1, ...,

H

δ

}
, z ∈

{
1, ...,

D

δ

}}
,

where W × H × D is the size of the input point cloud, and Cx,y,z is the set of points in a cell (x, y, z), i.e.
Cx,y,z =

{
xi ∈ D

∣∣|xi − x| < δ
2 , |yi − y| < δ

2 , |zi − z| < δ
2

}
.

The input point cloud before and ater the voxel grid ஁ltering with di஀erent cell sizes δ is shown in ஁gure .⑵⑷ܫ

Ater ஁ltering the point cloud, the subsampled cloud D is rotated and translated using the knowledge about the
⒔⒉B-D sensor’s position and tilt angle s.t. the ஂoor plane is described by equation z ≈ 0. ⒋n Boucher’s approach
the ⒍inect sensor is aligned parallel to the ground plane, hence only translation is necessary.

⒋n the modi஁ed approach, the accelerometer embedded into ⒍inect sensor is used to measure the angle θ between
the ground plane and the optical axis of the ⒍inect sensor at each input depth rame. The translation vector
t = [tx, ty, tz]

T that describes the sensor’s position w.r.t. robot’s base is measured empirically. De஁ne the rotation
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a) ⒔⒉B input b) ⒒oint cloud c) δ = 2 cm d) δ = 5 cm
(307, 200 points) (36, 491 points) (9, 860 points)

⒈igure :⑵⑷ܫ ⒒oint cloud processing steps in the proposed obstacle detection method. ⒋mage a) shows the original ⒔⒉B-D
point cloud, obtained rom the ⒍inect sensor. ⒋mages b) − d) show the same point cloud ஁ltered using the voxel grid ஁lter
with varying cell sizes δ.

matrix Rθ around x-axis (in ⒍inect’s coordinate system) as

Rθ =




1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)




Consider the point representation in homogeneous coordinates (i.e. let every point xi = [xi/wi, yi/wi, zi/wi]
T

in D be represented as x′
i = [xi, yi, zi, wi]

T ). Then the transformation P that aligns the ஂoor plane with the
plane z = 0 can be represented as

P =

[
Rθ t

0 0 0 1

]
,

i.e. the transformed point cloud Dt = {Pxi | xi ∈ D}. This transformation is illustrated in part c) of ஁gure
.⑶⑷ܫ

The next step in the obstacle detection process described by Boucher is to ஁lter the transformed point cloud Dt to
extract the region of interest immediately in ront of the robot. ⒒resence of points in this region would indicate
obstacles. This is achieved by using further prior knowledge about the robot’s size. ⒎et w×h be the robot’s width
and height respectively. ⒈urthermore, let d be the depth of the ⒔⒑⒋, which determines how far ahead of the robot
the obstacle has to be, for the robot to start avoiding it. Then the region of interest DROI can be obtained by
calculating

DROI =
{
xi ∈ Dt

∣∣∣ |xi| <
w

2
, 0 < yi < h, zi < d

}
.

The resulting point cloud is illustrated in part d) of ஁gure .⑶⑷ܫ

⒋n order to avoid the obstacles in the extracted region of interest, the turn direction for the robot is generated based
on the horizontal location of the centroid of DROI. ⒏ore speci஁cally, de஁ne the centroid of ⒔⒑⒋ xROI as

xROI =
1

|DROI|
∑

xi∈DROI

xi, if |DROI| > 0.

Then the presence of an obstacle is determined by the condition |DROI| > 0. ⒋f this condition is satis஁ed then
the turn direction for the robot is generated by examining the sign of the xROI coordinate of the centroid xROI =

[xROI, yROI, zROI]
T : if xROI < 0 then the obstacle lies on the let side of the robot hence a right turn signal is

generated, and vice versa.
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a) b)

c) d)

⒈igure :⑶⑷ܫ ⒒oint cloud processing steps in the proposed obstacle detection method. ⒋mage a) shows the original ⒔⒉B-D
point cloud, obtained rom the ⒍inect sensor. ⒋mage b) shows the same point cloud ஁ltered using the voxel grid ஁lter with
δ = 3 cm. ⒋mage c) shows the point cloud transformed by aligning the ground plane with the plane z = 0. ⒋mage d) shows
the obtained region-of-interest point cloud; points in this region are considered as obstacles.

To reduce the impact of sensor noise (arising due to external ⒋⒔ radiation, reஂective object surfaces, inaccurate
disparity measurements and so on), Boucher proposes the temporal smoothing of the ⒔⒑⒋ size |DROI| by calculating
a moving average in the following way.

⒎et |Dt
ROI| be the size of the ⒔⒑⒋ at time t. Then the obstacle presence criterion smoothed using a moving-average

can be expressed as
1

n

n−1∑

i=0

|Dt−i
ROI| > 0.

To prevent the robot rom getting stuck in an oscillating loop when facing a large obstacle, it is prohibited rom
changing the direction of the turn once it has started turning, as suggested by Boucher. ⒋n other words, ater the
robot starts to turn to avoid a detected obstacle, it must continue turning in the same direction until the path in
ront of it clears suஃciently to be able to drive forward.

Also, to avoid turning into another obstacle, which could cause the depth data to disappear making the robot think
that there is nothing but empty space ahead (when in reality it is standing right in ront of the obstacle) the second
improvement proposed by ⒒easley and Birch஁eld (⑴01⑵) is used. ⒐amely, if the un஁ltered point cloud D covers
less than m% of the depth image, then it is assumed that the robot is facing a nearby large obstacle, and a turn
direction is issued.
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The overall obstacle detection and avoidance process is summarized in an U⒏⒎ activity diagram in ஁gure ,⑷⑷ܫ and
its source code is provided in appendix A.⑵.

⒈igure :⑷⑷ܫ A high-level U⒏⒎ activity diagram describing the proposed obstacle detection and avoidance method used by
an autonomous event photographer robot.

The following chapter describes the development details of these (and other11) methods, including the hardware
components and sotware architecture of the implemented autonomous robot photographer.

11Automatic photograph composition and raming, extrinsic and intrinsic calibration of ⒍inect and photographic cameras, robot's state
externalization and so on.



Chapter 4

Development of “Luke”: an Event Photographer Robot

This chapter describes a detailed implementation of an autonomous robot photographer, named fluke. First, the hardware
components of the developed robot are discussed. Secondly, a high-level sotware design of the system is presented. flastly, a
detailed description of individual sotware components is provided.

4.1 Physical structure

⒎uke (஁gure (1ܬ is built on iClebo ⒍obuki’s base, which is able to carry up to 4 kg payload, has an operating
time of around ⑵ hours and is able to move at the maximum translational and rotational velocities of 65 cm/s and
180 ◦/s respectively. ⒈urthermore, ⒍obuki’s base contains three bumpers (let, center and right) which can be used
to provide alternatives to vision-based obstacle avoidance. This base is integrated into the Turtlebot ⑴ open robotics
platform using a kit containing laser-cut mounting plates and aluminium stando஀s.

⒈or its vision, ⒎uke uses a ⒏icrosot ⒍inect ⒔⒉B-D sensor, which provides both the depth and colour inputs. ⒋n
order to obtain the depth measures in the scene, ⒍inect projects a structured light pattern using an embedded ⒋⒔
projector, and captures this pattern using a monochrome C⒏⒑⒕ sensor. The distances to objects in the scene are
calculated using the triangulation of the ⒋⒔ pattern displacements. The depth-sensing video stream provides V⒉A
resolution (640 × 480 pixel size) images at around ⑵0 rames per second rate. Each depth reading is represented
as a 10-bit value (with a total of ⑹⑻⑶ possible values), with a hyperbolic relation between these values and the
metric depths in the scene. ⒈or colour input ⒍inect uses a ⒔⒉B camera, which is similarly capable of providing
V⒉A resolution colour images at ⑵0 ⒈⒒⒕ rate. The sensor has a combined 57◦ horizontal and 43◦ vertical ஁eld-of-
view.

⒍inect is attached to the Turtlebot’s base at a 10◦ angle, to be able to track upright standing humans at 1.5m–2.0m
distance. ⒕ince this limits low obstacle detection abilities, the linear velocity of the robot is limited to 10 m/s
and the bumpers on ⒍obuki’s base are used to provide graceful recovery in the case of collision with a low-lying
obstacle.

To take the photographic pictures ⒎uke uses a simple point-and-shoot ⒐ikon C⒑⒑⒎⒒⒋X ⒕⑵100 camera, which has
a maximum resolution of 1⑶ megapixels, a built-in ஂash, and supports automatic exposure/⒋⒕⒑ sensitivity/white
balance settings. This camera is mounted on a lightweight, aluminium ⒍önig ⒍⒐-T⒔⒋⒒⒑D⑴1 tripod (weighing
⑸⑶⑷ grams), which is attached to the top mounting plate of the robot. The overall size of the robot is approximately
34 cm× 135 cm× 35 cm (W ×H ×D).

⒈or ⒎uke’s state externalization, a ⒊TC ⒊D⑹ smartphone with a 4.3 inch ⒎CD display is mounted onto the robot.
The display has a resolution of 480× 800 pixels, and is capable of reproducing ⑴⑶-bit colours. ⒋t is used to display
⒎uke’s state messages and to show the ⒓⒔ (⒓uick ⒔esponse) codes containing the U⒔⒎s of the pictures that
⒎uke takes and uploads to ⒈lickr. The smartphone also serves as a wireless hotspot, providing a wireless network
connection between ⒎uke’s on-board computer and a monitoring/debugging station. ⒈urthermore, it provides the
internet connection to the on-board computer (for photo uploading to ⒈lickr) by tethering the phone’s ⑵⒉/ED⒉E
connection over Wi-⒈i.

The on-board A⒕U⒕ Eee ⒒C 10⑴⑷C netbook serves as ⒎uke’s “brain”. ⒋t has an ⒋ntel Atom ⒐⑴⑺00 ⑸ܩ ⒉⒊z C⒒U
and 1 ⒉B ⒔A⒏, provides the battery life of around ⑵ hours and weighs just under 1.25 kg. ⒋t is running the

⑸⑵
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Photographic camera
(Nikon COOLPIX S3100)

RGB-D sensor
(Microsoft Kinect)

Display and Wi-Fi hotspot
(HTC HD7)

On-board computer
(ASUS Eee PC 1025C)

Robot’s base
(iClebo Kobuki)

Built-in speakers

⒈igure :1ܬ ⒎uke, an autonomous event photographer robot.
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⒉roovy ⒉alapagos version of the ⒔obot ⒑perating ⒕ystem ramework (⒔⒑⒕, ⒓uigley et al. (⑴00⑻)) on a Ubuntu
ܴ0⑶ ⒎T⒕ operating system. All processing (including obstacle avoidance, human subject detection, photographic
composition evaluation and so on) is done on this machine.

4.1.1 Power sources

The robot contains two major power sources: a ⑴,⑴00 mAh lithium-ion battery which is enclosed in the ⒍obuki’s
base, and a ⑷,⑴00 mAh lithium-ion battery installed in the on-board netbook. The table below summarizes how
these sources are used to power individual hardware components of the robot.

⒊ardware component ⒒ower source
⒑n-board netbook ⒐etbook’s ⑷,⑴00 mAh ⒎i-ion battery
Wheel motors Base’s ⑴,⑴00 mAh ⒎i-ion battery
⒒hone (display and Wi-⒈i hotspot) ⒐etbook
⒒hotographic camera ⒐etbook
⒍inect ⒔⒉B-D sensor Base and netbook

Table :1ܬ Energy sources which are used to power individual hardware components of the robot.

During the empirical tests of fully-powered robot, the average discharge times for the netbook’s/⒍obuki base’s
batteries were ⑵ hours and ⑸ minutes/⑵ hours and ⑴0 minutes respectively.

⒊aving introduced the main hardware components of ⒎uke and their basic properties, the sections below discuss
the sotware components that provide all of ⒎uke’s functionality, starting with a high-level overview of the ⒔obot
⒑perating ⒕ystem.

4.2 Software architecture

All sotware components of the robot (except the display) are implemented within ⒔⒑⒕, an open-source robot
operating system. ⒈or this reason, the main concepts of ⒔⒑⒕ are brieஂy summarized below.

4.2.1 High-level overview of the Robot Operating System

⒔⒑⒕ is based on a graph-like architecture: the computation happens in separate processes, called nodes, which run
in parallel and can be distributed across multiple hosts. A ⒔⒑⒕ master provides naming and registration services
which allow the nodes to ஁nd each other based on their names during their run-time.

⒐odes are connected in a peer-to-peer topology through X⒏⒎-⒔⒒C1, using programming-language-neutral in-
terface de஁nitions written in interface de஁nition language (⒋D⒎). ⒋D⒎ descriptions are strongly typed and can
be composed rom primitive types, other ⒋D⒎ descriptions (nested arbitrarily deep), or the arbitrary length ar-
rays of these types. The language-neutrality allows individual nodes to be implemented in di஀erent programming
languages, e.g. ⒎uke uses nodes written in both in C++ (majority) and in ⒒ython.

⒐odes communicate via one-way message passing. Two modes of communication are supported by ⒔⒑⒕: syn-
chronous and asynchronous. ⒋n the synchronous communication mode, a service node exposes request and response

1⒔emote procedure call protocol that uses X⒏⒎ for call encoding and ⒊TT⒒ for call transport.
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⒋D⒎ de஁nitions, together with the service’s name. A client node that wants to use this service sends a request
message via the ⒔⒑⒕ master, and blocks until a response message is received.

⒋n the asynchronous communication mode, nodes communicate using the publisher/subscriber pattern. A publisher
node provides the ⒋D⒎ description of the messages that it asynchronously broadcasts on a given topic name. ⒏ultiple
subscriber nodes can sign up for the messages on a speci஁c topic. ⒋n general, a single node might mix-and-match
these communication patterns, e.g. it might act as a service provider for a certain type of data, while subscribing to
a number of topics and asynchronously publishing other data.

Cohesive sets of nodes (parts of the overall robot’s communication and processing graph) can be grouped together
into a single ⒔⒑⒕ package, which performs a speci஁c task (e.g. provides robot’s locomotion). These packages
can include the source code of the nodes, ⒋D⒎ message descriptions for topics and services, supporting libraries,
documentation and other ஁les. They also include launch instructions, which speciy how the cluster of nodes in
the package can be integrated into the rest of the computation graph, potentially across di஀erent machines.

⒈inally, to simpliy the overall system con஁guration and maintenance, ⒔⒑⒕ provides services for global parameter
setting and node output logging. ⒈or system’s behaviour tweaking at run-time, ⒔⒑⒕ parameter server can be
used. ⒐odes can access the parameter server through ⒔⒑⒕ master and can read/write parameter values rom/to
a global, hierarchical key-value dictionary. ⒒arameters can also be speci஁ed via the launch instructions of the
packages. ⒕imilarly, ⒔⒑⒕ nodes can use the system-wide logging server which is capable of logging the node
output messages at ஁ve verbosity levels in a printf style syntax, and provides various tools for on-/o஀-line log
஁ltering and analysis.

⒋n the next section, the ⒔⒑⒕ graph of ⒎uke’s architectural sotware design is presented, including the individual
nodes and the data that ஂows in the topics/services over which these nodes communicate.

4.2.2 Architectural system design

⒎uke’s sotware is architected based on Brooks’ (1⑻⑺⑸) hierarchical levels-of-competence approach. Each of the
layers in ⒎uke’s sotware hierarchy is based on the behaviours that ⒎uke can perform:

• The base layer allows ⒎uke to aimlessly wander around the environment, while avoiding collisions with
obstacles.

• The second layer suppresses the random wandering behaviour at certain time intervals (adhering to what
Brooks called a subsumption architecture), and enables ⒎uke to compose, take and upload photographs of
people around him.

• The ஁nal layer enables ⒎uke to externalize his state i) visually, by showing text messages/⒓⒔ codes on the
attached display, and ii) vocally, by reading state messages out loud using text-to-speech sotware.

This architecture is illustrated in ஁gure ,⑴ܬ and the responsibilities of individual nodes in this architecture are
summarized in table .⑴ܬ

4.2.3 Individual node implementations

⒋ndividual nodes in the architecture were developed using a separate workstation, with ⒋ntel Core i⑷ C⒒U, containing
two hyperthreaded cores running at ⑵ܪ ⒉⒊z, and ⑺ ⒉B of ⒔A⒏. The workstation was set up to have an identical
sotware con஁guration as the robot’s on-board computer (i.e. ⒔⒑⒕ ⒉roovy ⒉alapagos running on Ubuntu ܴ0⑶
⒎T⒕).
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⒈igure :⑴ܬ A simpli஁ed ⒎uke’s architectural design diagram, showing ⒔⒑⒕ nodes (red, green, purple and yellow) together
with ⒋/⒑ devices (gray rectangles), and the data that is being passed between them (text on the arrows). All nodes with
pre஁xes “rp_” (green, purple and yellow) are the results of the work presented in this thesis, the red nodes are parts of ⒍obuk-
i/⒔⒑⒕/⒉⒈reenect/⒍inect AUX libraries. ⒛ellow, green and purple nodes represent the ஁rst, second and third ⒎uke’s com-
petence levels (corresponding to obstacle avoidance, human tracking/photograph taking and state externalization behaviours).
The explanations of individual node functional responsibilities are given in table .⑴ܬ
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Table :⑴ܬ ⒕ummarized responsibilities of individual nodes comprising ⒎uke’s ⒔⒑⒕ graph.

⒐ode ⒏ain responsibility ⒒rogr.
lang.

rp_locomotion ⒔obot photographer’s (⒔⒒) locomotion node, which converts driving direction
messages and bumper press events into linear/angular velocity messages.

C++

rp_navigation ⒔⒒’s navigation node, which multiplexes between the competing driving direc-
tions proposed by obstacle avoidance and photographic composition (raming)
nodes.

C++

rp_obstacle_
avoidance

⒔⒒’s obstacle avoidance node, which uses the point cloud and accelerometer
inputs rom ⒍inect to detect obstacles in ront of the robot.

C++

rp_head_tracking ⒔⒒’s head tracking node, which uses the colour and depth inputs rom ⒍inect
to detect and track humans in ⒎uke’s vicinity.

C++

rp_raming ⒔⒒’s photographic composition node, which uses the human head locations
provided by the head tracking node to calculate the most aesthetically pleasing
raming for the picture.

C++

rp_autonomous_
photography

⒒hotograph-taking process coordinator node, which issues commands for tak-
ing and uploading the pictures.

C++

rp_camera ⒔⒒’s node which takes pictures using a photographic camera via the gphoto⑴
library.

C++

rp_uploading ⒔⒒’s node which uploads taken pictures to the ⒈lickr online gallery, using the
⒈lickr A⒒⒋.

⒒ython

rp_display ⒔⒒’s display node, which sends status messages/hyperlinks to taken pictures via
TC⒒ to a corresponding Windows ⒒hone application that displays them on an
attached ⒊TC ⒊D⑹ phone.

C++

rp_speech ⒔⒒’s text-to-speech synthesis node, which vocalizes input status messages using
the Espeak library.

C++

rp_state_exter-
nalization

⒔⒒’s node responsible for generating vocal/visual status messages about the in-
ternal state of the robot.

C++

⒔obot’s state dis-
play app for Win-
dows ⒒hone†

This app serves as a counterpart to the rp_display node, by rendering the in-
coming status messages/hyperlinks (the latter ones as ⒓⒔-codes) on the phone’s
display.

C#

Camera calibra-
tion tool†

This tool is used to calibrate the photographic camera (by removing tangen-
tial and radial lens distortion), which is necessary for photographic camera and
depth camera alignment.

C++

camera ⒉⒈reenect drivers for ⒍inect sensor, which provide aligned colour and depth
images, and point clouds.

-

kinect_aux ⒍inect AUX drivers, which provide the ⒍inect sensor’s accelerometer readings
(i.e. the sensor’s tilt angle).

-

mobile_base iClebo ⒍obuki base driver, which provides access to the wheel motor power and
linear/angular velocities, and bumper press/wheel drop/cli஀ events.

-

yocs_velocity_
smoother

⒛ujin ⒔obot’s ⒑pen-⒕ource Control ⒕otware (⒛⒑C⒕) velocity and acceleration
smoother.

-

cmd_vel_mux ⒛⒑C⒕ velocity input multiplexer, which serializes and prioritizes incoming ve-
locity messages (giving preference to the safety controller’s messages).

-

kobuki_safety_
controller

iClebo ⒍obuki’s safety controller, which keeps track of the base’s wheel drop/-
cli஀/bumper events. ⒋n the ஁rst case it produces a stop command (zero velocity),
in the latter two cases it produces a negative linear velocity.

-

† ⒐ot parts of robot photographer’s ⒔⒑⒕ node graph.
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⒈or node development and debugging, an Eclipse integrated development environment (⒋DE) was adapted to work
with ⒔⒑⒕ node build/launch system. ⒈or C++ development an Eclipse CDT (C/C++ Development Tooling) exten-
sion was set-up, providing visual debugging tools, source navigation, refactoring and other capabilities. To ensure
the maintainability of the code, C++ nodes were written adhering to ⒉oogle’s C++ coding standard. An analogous
extension for Eclipse called ⒒yDev was set up for node development in ⒒ython. ⒈inally, for Windows ⒒hone app
development (for the robot’s display), the workstation was adapted to dual-boot into Windows ⑹, where ⒏icrosot
Visual ⒕tudio ⑴010 ⒋DE was set up for C# development.

Both ⒋DEs were fully con஁gured to use ⒉it distributed version control and source code management system, with the
main repository hosted on a remote server featuring a guaranteed minimum three-copy backup and an immediate
hot-swap system in the case of a hardware or sotware failure.

⒊aving provided the description of the development environment used in this project, the implementation details
of individual nodes in each of ⒎uke’s competence layers are described below, starting with the random wandering
behavioural capability.

4.2.3.1 Random walking with collision avoidance

⒎uke’s capability to randomly wander in the environment without bumping into any static or moving obstacles is
implemented in three ⒔⒑⒕ nodes: rp_obstacle_detection, rp_locomotion and rp_navigation. The implementation of
each of these nodes is brieஂy discussed below.

Obstacle avoidance (rp_obstacle_avoidance) The proposed method to detect and avoid the obstacles (as de-
scribed in section (⑴ܫܫ is implemented by rp_obstacle_avoidance node.

This node starts the processing by obtaining the input point cloud rom the camera/depth_registered/points topic,
provided by the ⒉⒈reenect library (⒑pen⒍inect, ⑴01⑴) which publishes point clouds at ⑵0 Hz requency. ⒕imilarly,
the obstacle avoidance node obtains the ⒍inect’s tilt angle rom a inect_aux/cur_tilt_angle topic provided by the
⒍inect AUX library (Dryanovski et al., ⑴011). This library provides the readings rom the ⒍inect’s accelerometer
at ⑴0 Hz requency.

Then rp_obstacle_avoidance node performs the main point cloud manipulations as described in section ⑴ܫܫ (viz.
point cloud subsampling, translation/rotation to align the ground plane with the plane z = 0, and cropping to the

(
)

( )

, ,

⒈igure :⑵ܬ ⒒erformance evaluation of the obstacle detection and avoidance node (rp_obstacle_avoidance) under di஀erent point
cloud subsampling ஁lter sizes.
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⒈igure :⑶ܬ A simpli஁ed U⒏⒎ activity diagram of the obstacle avoidance (rp_obstacle_avoidance) ⒔⒑⒕ node.

⒔⒑⒋ in ront of the robot). All these manipulations are performed using an open-source ⒒C⒎ library (⒔usu and
Cousins, ⑴011).

Ater the point cloud pre-processing, this node calculates the moving average of the ⒔⒑⒋ in ront of the robot
over the last n rames. ⒋f the average size exceeds zero, then this node generates a turn direction (LEFT or RIGHT)
which steers the robot away rom the centroid of points in the ⒔⒑⒋. ⒋f the ⒔⒑⒋ over the last n rames is empty,
then this node generates FORWARD driving direction proposal. These direction proposals are published over the
rp/obstacle_avoidance/driving_direction topic.

The computational performance of this node largely depends on the point cloud size, which in turn depends on
the grid size of the voxel subsampling ஁lter, used in the pre-processing step. The impact of this ஁lter’s size to the
overall node’s performance was measured using two di஀erent machines: ⒎uke’s on-board netbook (with dual-core
⑸ܩ ⒉⒊z ⒋ntel Atom C⒒U, 1 ⒉B ⒔A⒏) and the development workstation (with dual-core hyperthreaded ⑵ܪ ⒉⒊z
⒋ntel Core i⑷ C⒒U, ⑺ ⒉B of ⒔A⒏). The obtained results are presented in ஁gure .⑵ܬ
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Navigation (rp_navigation) The navigation node (rp_navigation) multiplexes between the driving direction sug-
gestions provided by the obstacle avoidance (rp_obstacle_avoidance) and photograph raming (rp_raming) nodes,
based on the input rom the autonomous photography process control node (rp_autonomous_photography).

⒈igure :⑷ܬ A simpli஁ed U⒏⒎ activity diagram of the navigation (rp_navigation) ⒔⒑⒕ node.

⒋n essence, the navigation node enables the raming node to override the random wandering behaviour provided by
the obstacle avoidance node, but only when it is safe to do so. ⒋n particular, it allows the raming node to override
the driving direction if and only if the obstacle avoidance node proposes the FORWARD direction, or if the raming
node wants to stop/turn in place.

⒋ts simpli஁ed U⒏⒎ activity diagram is shown in ஁gure .⑷ܬ

Locomotion (rp_locomotion) ⒎uke’s locomotion node (rp_locomotion) is responsible for generating initial linear
and angular velocity messages, based on multiplexed driving direction generated by the navigation node and on
bumper events generated by the ⒍obuki’s base node (mobile_base). ⒋ts behaviour is illustrated in ஁gure .⑸ܬ

Basically, the locomotion node takes the input driving direction (FORWARD, BACKWARD, LEFT, RIGHT or STOP) and
produces an appropriate linear/angular velocity message. ⒈or example, a message corresponding to the direction
FORWARDwould contain linear and angular velocity vectors l = [θl, 0, 0]

T and a = [0, 0, 0]T respectively, where θl is
a desired linear velocity parameter (settable through the launch ஁le or through the parameter server). ⒕imilarly, if the
driving direction is LEFT then linear and angular velocity vectors would contain l = [0, 0, 0]T and a = [0, 0, θa]

T ,
where θa is the desired angular velocity parameter.

⒊owever, if a bumper event is registered then the locomotion node generates the message containing l = 0 and
a = [0, 0,±θa]T (where the direction of turn depends on which bumper registered the event). The locomotion
node keeps producing this message until the robot turns ∼ 180◦ before continuing its random wandering.
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⒈igure :⑸ܬ A simpli஁ed U⒏⒎ activity diagram of the locomotion (rp_locomotion) ⒔⒑⒕ node.

⒑nce the locomotion message is constructed, it is passed to ⒛ujin ⒔obot’s ⒑pen-⒕ource Control ⒕otware
(⒛⒑C⒕) velocity multiplexer node (cmd_vel_mux). This node also receives the input rom ⒛⒑C⒕ safety con-
troller (kobui_safety_controller), which generates temporary zero/negative linear velocity messages in the respective
cases of wheel drop or cli஀/bumper events. The ⒛⒑C⒕ velocity multiplexer mode prioritizes the input rom the
safety controller node, hence the robot is further prevented rom causing damage to itself, or objects in its envi-
ronment.

The output produced by ⒛⒑C⒕ velocity multiplexer is sent to the ⒛⒑C⒕ velocity smoother (yocs_velocity_smoother),
which applies the given acceleration/deceleration and velocity limits to input velocities, thereby ensuring a ஂuid
motion of the robot. These smoothed linear/angular velocities are then sent directly to the ⒍obuki’s base node
(mobile_base), which appropriately sets the robot’s wheel speeds.

4.2.3.2 Taking well-composed photographs of humans

⒎uke’s second major behavioural competence involves his ability to i) track humans in an unstructured environ-
ment, ii) take well-composed pictures of them, and iii) upload these pictures to an on-line picture gallery. This
competence layer is implemented by ஁ve ⒔⒑⒕ nodes: rp_head_tracing, rp_raming, rp_camera, rp_uploading and
rp_autonomous_photography, each of which is discussed in more detail below.

Head detection and tracking (rp_head_tracking) The head detection and tracking node (rp_head_tracing) is the
most sophisticated node in ⒎uke’s ⒔⒑⒕ graph, consisting of multiple loosely-coupled classes with clearly separated
responsibilities (shown in U⒏⒎ class diagram in ஁gure .(⑹ܬ

This node implements the human subject detection and tracking methods, proposed in section .1ܫܫ ⒋n particular,
it performs multiple human detection rom depth data using an extension to ⒉arstka and ⒒eters’ (⑴011) method,
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⒈igure :⑹ܬ A simpli஁ed U⒏⒎ class diagram of a subset of classes implementing rp_head_tracker ⒔⒑⒕ node. ⒋mage pre-
processing/utility classes are shown in yellow, depth/colour face detectors and trackers are shown in green, skin classi஁ers are
shown in red, and the node’s “command-and-control” class is shown in purple.
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detected head candidate veri஁cation using ⒔⒉B data and Bayesian/kernel logistic regression classi஁ers, and detected
human subject tracking using a modi஁cation of continuously-adaptive mean-shit tracker, by Bradski (1⑻⑻⑺).

The rp_head_tracing node persists two main pieces of state between consecutive rames:

• a set of currently detected/tracked heads H = {(ri, fi)}i=1,...,k, where each head i is represented by a
rectangle in the image plane ri and the number of rames fi since it was last detected, and

• the mode that the rp_head_tracing node is operating in.

Depending on whether the Bayesian or kernel logistic regression classi஁er is used for skin detec-
tion, the head detection/tracking node can be in one of {DETECTING_HEADS, TRACKING_HEADS} or
{GATHERING_FACE_HUE_DATA, DETECTING_HEADS, TRACKING_HEADS} modes respectively. The behaviour of the
rp_head_tracing node in each of those modes is further described below, but ஁rst the head setH update mechanism
is explained.

⒎et Ht = {(ri, hi)t} be the set of detected/tracked heads at time t. To obtain the updated set Ht+1 (which is
initialized to Ht+1 = Ht) the following procedure is applied:

• ⒋f the node is in DETECTING_HEADS mode, then let Rt+1 = {ri} be the set of head rectangles detected
at time t + 1. ⒉iven this set, the counters of “old” heads which do not have corresponding “new” head
detections are incremented:

∀(ri, hi)t ∈ Ht. (¬∃rj ∈ Rt+1.suरcientlySimilar(ri, rj))→ (ri, hi)t+1 := (ri, hi + 1)t,

where suरcientlySimilar(x,y) is the predicate that determines whether two rectangles x and y are
suஃciently similar. ⒒ossible variants of this predicate include the thresholded ⒌accard’s coeஃcient
(suरcientlySimilar(x,y) = |x∩y|

|x∪y| > θ) or a simple rectangle intersection non-emptiness check
(suरcientlySimilar(x,y) = |x ∩ y| > 0, as used in this project).

Then the “old” heads which have corresponding suஃciently similar “new” heads have their histories reset
and their head rectangles updated:

∀(ri, hi)t ∈ Ht. (∃rj ∈ Rt+1.suरcientlySimilar(ri, rj))→ (ri, hi)t+1 := (rj , 0).

⒕ince new people might have entered the robot’s ஁eld-of-view, the “new” heads that do not have correspond-
ing “old” heads are added to the head set:

∀ri ∈ Rt+1. (¬∃(rj , hj)t ∈ Ht.suरcientlySimilar(ri, rj))→ Ht+1 := Ht+1 ∪ {(ri, 0)}.

⒈inally, the heads that were not re-detected for more than n rames are removed rom Ht+1:

∀(ri, hi)t+1 ∈ Ht+1.hi > n→ Ht+1 := Ht+1\{(ri, hi)t+1}.

⒋n essence this approach is quite similar to the clock-style page replacement algorithms in ⒑⒕ virtual memory
management systems, in a sense that the detection algorithm is allowed “second chances”. ⒏ore precisely, a
given head must not be found in n subsequent detection attempts before it is removed, thereby reducing the
sensitivity of the overall head detection and tracking approach to the sensor’s noise and inaccuracies of the
head’s detection method.
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• ⒋f the node is in TRACKING_HEADS mode, then the modi஁ed Bradski’s (1⑻⑻⑺) CA⒏⒕hit algorithm is used
to track each of the heads individually, as described in section .⑶ܩܫܫ

⒋n particular, for each head (ri, hi)t+1 ∈ Ht+1 let r̂i be the new head rectangle obtained by CA⒏⒕hit
tracker.

⒋f |r̂i| > 0 then the head set Ht+1 is updated by setting (ri, hi)t+1 := (r̂i, hi)t+1.

⒑therwise, the head is considered lost and is removed rom the head set, i.e. Ht+1 := Ht+1\{(ri, hi)t+1}.

• The head set H is not used when the node is in GATHERING_FACE_HUE_DATA state. The node is in this
state only during the robot’s initialization to gather face/background hue samples using the Viola and ⒌ones
(⑴001) face detector and the face/background region extraction heuristic described in section .⑵ܩܫܫ

The ஁nite-state machine that shows the transitions between each of the states of rp_head_tracing node is
given in ஁gure ⑺ܬ and the behaviour of the node in each state is explained below, starting with a GATHER-

ING_FACE_HUE_DATA state.

Gathered face hue sample count > n

GATHERING_FACE_HUE_DATA
k frames elapsed since

last detection, or |    t|=0
|    t|>0

a) ⒐ode’s state transitions if ⒍⒎⒔ b) ⒐ode’s state transitions if Bayesian
skin hue classi஁er is used skin colour classi஁er is used

⒈igure :⑺ܬ ⒈inite-state machines of the rp_head_tracker ⒔⒑⒕ node if a) the kernel logistic regression skin hue classi஁er, or
b) Bayesian skin colour classi஁er is used.

⒋n the GATHERING_FACE_HUE_DATA state, rontal and pro஁le face Viola and ⒌ones (⑴001) detector cascades are used
for face detection in incoming ⒔⒉B rames until n face rectangles are detected⑴. Each of the detected face rectangles
is split into face and background regions (as described in section ,(⑵ܩܫܫ and two normalized hue histograms are
constructed. This yields a set of training examples D = {(h1, t1), ..., (h2n, t2n)} (where hi is a normalized hue
histogram, with ti = 1 if the histogram is of skin region, and ti = 0 otherwise). This training set is then used to
train a kernel logistic regression (⒍⒎⒔) classi஁er.

To obtain a maximum-a-posteriori (⒏A⒒) estimate of the ⒍⒎⒔’s weight vectorα, the objective function in equation
(⑵1ܫ) is minimized using the resilient backpropagation variant of the gradient descent algorithm (i⒔prop−, ⒔ied-
miller (1⑻⑻⑶)). ⒕ince this algorithm requires a gradient of the likelihood function, it is calculated rom equation
(⑵1ܫ) as ∇L(α) =

(
∂L(α)
∂α1

, ...,
∂L(α)
∂αn

)
, where

∂

∂αk
L(α) =−

∑

i

[
∂

∂αk
ti logσ(

∑
j αjK(hj ,hi)) +

∂

∂αk
(1− ti) log(1− σ(

∑
j αjK(hj ,hi)))

]
+

+
∂

∂αk

∑
i,j αiαjK(hi,hj)

2λ2

=−
∑

i

[
ti(1− σ(

∑
j αjK(hj ,hi)))− (1− ti)σ(

∑
j αjK(hj ,hi))

]
K(hk,hi)+

+
1

λ2

∑

i

K(hi,hk)αi

=
∑

i

[αi

λ2
+ σ(

∑
j αjK(hj ,hi))− ti

]
K(hi,hk).

⑴The implementation of the face detector with trained cascades is obtained rom the open-source ⒑penCV library (Bradski, ⑴000).
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Algorithm 4.2.3.1 A variant of the resilient backpropagation algorithm i⒔prop− (⒔iedmiller, 1⑻⑻⑶), as used by
rp_head_tracing node for the kernel logistic regression classi஁er training. ⒉iven the objective function L(α), its
gradient ∇L(α), a kernel K(x,y), initial step sizes s and the time limit for training T this function attempts to
஁nd the weights α = (α1, ..., αn) minimizing L(α).
⒔௰௾௴l௴௰௹௿-Ba௮k௻௽௺௻a௲a௿௴௺௹(L(α),∇L(α), s, T )

1 // Initialize the weights and the gradient for the next step
⑴ α← 0, g′ ← 0

⑵ repeat
⑶ g ← ∇L(α)
⑷ for i = 1 to n
⑸ if gi × g′i > 0 // Direction is unchanged
⑹ si ← 1.2si
⑺ elseif gi × g′i < 0 // Direction changed
⑻ si ← 0.5si
10 gi ← 0 // Force no change in the next iteration
11 // Update the weights based on step size and gradient direction
1⑴ αi ← αi − si × sign(gi)
1⑵ // Save the gradient
1⑶ g′ ← g

1⑷ until time T expires

1⑸ return α

Ater obtaining the training example set D the rp_head_tracing node uses the adapted i⒔prop− algorithm (given
in listing (1ܫܪܬ to train a ⒍⒎⒔ classi஁er with an ⒔B⒈ (⒉aussian) kernel (i.e. K(x,y) = exp

(
− ||x−y||2

2δ2

)
). A

few examples of pattern classi஁cation using a kernel logistic regression trained using i⒔prop− algorithm are shown
in ஁gure .⑻ܬ

⒈igure :⑻ܬ ⒕ample non-linear patterns classi஁ed using logistic regression classi஁er with a radial basis function kernel and a
⒉aussian prior, trained using resilient backpropagation algorithm.

The visual summary of rp_head_tracing node’s operation in GATHERING_FACE_HUE_DATAmode is shown in ஁gure
.10ܬ

Ater training the kernel logistic regression classi஁er, the rp_head_tracking node switches into the DETECT-

ING_HEADS state. ⒋n this state, an incoming depth image is searched for the presence of humans, and if there are
any, the bounding rectangles of their heads are produced. To achieve this task, the extended ⒉arstka and ⒒eters’
(⑴011) method (as described in section (⑴ܩܫܫ is used to detect the candidate human head rectangles rom the
depth data.



⑹⑹ CHAPTER 4. DEVEflOPffiENT OF “flUfiE”: AN EVENT PHOTOGRAPHER ROBOT

⒈igure :10ܬ A simpli஁ed U⒏⒎ activity diagram of the rp_head_tracing node’s behaviour in GATHERING_FACE_HUE_DATA
mode.

To incorporate the extra information present in the ⒔⒉B data, these rectangles are further examined by either the
⒍⒎⒔ face hue classi஁er or a Bayesian skin colour classi஁er. ⒋f the ⒍⒎⒔ classi஁er is used then the binary mask rom
part c) of ஁gure 1⑷ܫ is ஁tted to each of the detected head rectangles, and the hue histogram h is calculated rom
the region within the mask. This histogram is then normalized and used as a feature vector for the ⒍⒎⒔ classi஁er,
which produces the probability ⒒r(sin|h) = σ(

∑
i αiK(hi,h)). The overall detection is classi஁ed as a head if

and only if ⒒r(sin|h) > θ, where θ is a user-speci஁ed threshold.

⒋f the Bayesian skin colour classi஁er is used (as described in detail in section (⑵ܩܫܫ then the decision on whether
the candidate head rectangle should be rejected/accepted is made based on the proportion of the skin pixels in the
candidate rectangle. To count this proportion, a given pixel in the candidate head’s window with values R = r,
G = g and B = b (below shortened as rgb) is classi஁ed as belonging either to the skin, or non-skin region based
on the likelihood ratio ⒒r(rgb|sin)

⒒r(rgb|¬sin) ≥? θ, where θ is a user-speci஁ed threshold.

The maximum likelihood estimates for the probabilities ⒒r(rgb|sin) and ⒒r(rgb|¬sin) are learned o஀-line, rom a
large-scale, supervised Compaq skin-image dataset⑵ containing ⑺0,⑵10,⑵⑷⑷ manually tagged skin and ⑺⑸1,1⑹⑵,⑺⑶⑻
non-skin pixels (⒌ones and ⒔ehg, ⑴00⑴).

Ater using the ⒍⒎⒔ or Bayesian classi஁ers to veriy the head candidates, the ஁nal detected head set Rt+1 is used
to update the head history set Ht+1 using the procedure described earlier. ⒋f Ht+1 = ∅, then the node stays
in DETECTING_HEADS state and the head detection process is repeated for a new depth input rame. ⒑therwise,
the rp_head_tracing node switches into TRACKING_HEADS state. This behaviour is visually summarized in ஁gure
.11ܬ

⒋n the TRACKING_HEADS state, a modi஁ed continuously adaptive mean-shit (CA⒏⒕hit) algorithm is used to track
detected heads using depth data (as described in detail in section .(⑶ܩܫܫ As a quick reminder, the depth image is
஁rst preprocessed by ஁ltering depth shadows and smoothing it with an averaging ஁lter. Then the constraints rom
equation (⑺ܫ) are used to reject local horizontal minima which could not possibly lie on the vertical head axis,
thereby de஁ning a degenerate head probability. The new head rectangle is obtained by ஁nding the mode of this
probability distribution using the mean-shit approach, while the size of the new rectangle is obtained rom this
distribution’s zeroth moment, as described by Bradski (1⑻⑻⑺).

Ater obtaining the new head rectangle positions and sizes, degenerate rectangles (with zero area) are removed rom
⑵This dataset was generously provided personally by ⒏. ⒌ones.
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⒈igure :11ܬ A simpli஁ed U⒏⒎ activity diagram of the
rp_head_tracing node’s behaviour in DETECTING_HEADS
mode.

⒈igure :⑴1ܬ A simpli஁ed U⒏⒎ activity diagram of the
rp_head_tracing node’s behaviour in TRACKING_HEADS
mode.
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⒎egend Depth shadow removal Depth blurring (r = 2) Veri஁cation using colour data
✗ ✗ ✗

✓ ✗ ✗

✓ ✓ ✗

✓ ✓ Bayesian classi஁er
✓ ✓ ⒍⒎⒔ classi஁er

(
)

,

(
)

,

⒈igure :⑵1ܬ ⒒erformance evaluation of the head detection and tracking node (rp_head_tracing) with respect to di஀erent head
re-detection thresholds k and various head detection/tracking modes.

the head history set. ⒋f the resulting head set is empty, i.e.Ht+1 = ∅ then the rp_head_tracing node immediately
switches to DETECTING_HEADSmode. ⒑therwise, it stays in TRACKING_HEADSmode until k rames elapse since the
last head detection attempt. The user-speci஁ed threshold k determines the trade-o஀ between the computational
eஃciency and the node’s responsiveness to new human subjects (i.e. a small k reduces the average time the robot
needs to start tracking a new person in its ⒈⒑V, and vice versa). This behaviour is again summarized visually in
U⒏⒎ activity diagram .⑴1ܬ

The run-time performance of this node is measured for a variety of parameter combinations on both on-board and
development computers. The results of this evaluation are presented in ஁gure .⑵1ܬ

Photo composition and framing (rp_framing) The second most important node in ⒎uke’s “picture taking” be-
havioural capability layer is the photograph composition and raming (rp_raming) node. This node works as
follows.

⒈irst of all, it subscribes to the locations of detected/tracked human subject heads in ⒍inect’s image plane, published
by the rp_head_tracing node. Then, this node maps the head locations rom ⒍inect’s image plane to the photo-
graphic camera’s image plane and calculates the ideal raming based on the raming rules described by Dixon et al.
(⑴00⑵). ⒋f the calculated ideal rame lies outside the current photographic camera’s image plane, a turn direction is
proposed; otherwise, the ideal rame location is published over /rp/raming/rame topic. These steps are described
in more detail below.

⒋n order to map the locations of detected heads rom ⒍inect’s to photographic camera’s image plane, the following
observations are used:

• Each point p = [x, y]T on ⒍inect’s image plane can be mapped to a corresponding point P = [X,Y, Z]T

in the world coordinates (with the ⒍inect sensor at the origin).

• The extrinsic transformation operator between ⒍inect sensor and photographic camera can be obtained by
measuring the translation and rotation between the two devices on the robot’s rigid rame. ⒎et t be the
obtained translation vector and R be the obtained rotation matrix.



4.2. SOFTWARE ARCHITECTURE ⑺0

• ⒋f the pinhole model of the camera is assumed, then the corresponding point pc on the photographic camera’s
image plane could be calculated as

pc =

[
fx

(
Xc

Zc

)
, fy

(
Yc

Zc

)]T
,

where fx and fy are the horizontal/vertical focal lengths of the photographic camera and Pc = [Xc, Yc, Zc]
T

are the coordinates of the world point P in the photographic camera reference rame, obtained by calculating

Pc =



Xc

Yc

Zc


 = RP + t. (1ܬ)

⒊owever, the pinhole model is inaccurate due to i) the principal point’s displacement, and ii) lens distortions.
The former phenomenon occurs due to the camera CCD/C⒏⒑⒕ sensor’s center being slightly misaligned rom the
lens’ optical axis. To deal with this inaccuracy, the model can be extended with two parameters cx and cy which
represent the horizontal and vertical o஀sets of the image center coordinates rom the camera’s optical axis.

⒋n this case, a world point projected onto the camera image plane would have the coordinates

pc =

[
fx

(
Xc

Zc

)
+ cx, fy

(
Yc

Zc

)
+ cy

]T
.

De஁ne the camera intrinsics matrix as

M =



fx 0 cx

0 fy cy

0 0 1


 , (⑴ܬ)

then the projection of the world pointP onto a camera image plane could be expressed in homogeneous coordinates
as pc = MPc = M(RP + t).

To account for the second phenomena (viz. lens distortion) a ``plumb bob'' model proposed by Brown (1⑻⑸⑸) can
be used. This model simulates both radial distortion caused by the spherical shape of the lens, and the tangential
distortion, arising rom the inaccuracies of the assembly process.

⒏ore precisely, the radial distortion occurs since the light passing through the edges of the spherical lens is reracted
more severely than the light passing through the center of the lens (as illustrated in parts a) and c) of ஁gure .(⑶1ܬ
The tangential distortion, occurring when the lens and a CCD/C⒏⒑⒕ sensor are not perfectly parallel is illustrated
in parts b) and d) of ஁gure .⑶1ܬ

⒋n Brown’s model the radial distortion is approximated by the Taylor series in the point’s radial distance rom the
image plane’s centre. ⒉iven an undistorted point on the camera’s image plane pi = [xi, yi]

T , the distorted point
pd = [xd, yd]

T is de஁ned as

pd =

[
xd

yd

]
= (1 + κ1r

2 + κ2r
4 + κ3r

6 + ...)

[
xi

yi

]
, (⑵ܬ)

where κi are the radial distortion parameters and r = ||pi|| =
√
xi2 + yi2.
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Image sensor        Lens                                   Object

x

x
y

y

x=yx=y

Image sensor        Lens                                   Object

a) b)

c) d)

⒈igure :⑶1ܬ Example of radial and tangential lens distortions. ⒋mage a) shows the radial (“barrel”) distortion, where rays
further rom the center of the lens are reracted stronger than the rays closer to the center (notice the equidistant object points
on the right, and non-equidistant points on the sensor on the let). ⒋mage b) shows the tangential distortion, occurring due to
misalignment between the lens and the image sensor. ⒋mages c) and d) taken rom Bouguet (⑴010) show the radial/tangential
distortion plots for a particular lens, with the arrows indicating pixel displacements due to lens distortion.

The tangential distortion in Brown’s model is described as

pd =

[
xd

yd

]
=

[
p1(2xiyi) + p2(r

2 + 2xi
2)

p2(2xiyi) + p1(r
2 + 2yi

2)

]
, (⑶ܬ)

where p1, p2 are the tangential distortion parameters (see Brown (1⑻⑸⑸) for full derivation).

Then the ஁nal projection model which combines the principal point displacement and radial/tangential distortions
can be de஁ned by combining equations ,(1ܬ) ,(⑴ܬ) (⑵ܬ) and .(⑶ܬ) ⒋n particular, let P = [X,Y, Z]T be the
point in ⒍inect-centred world coordinates. Then its projection on the photographic camera’s image plane pc can
be obtained in the following way:

ܩ Transform the point rom world coordinates to the photographic camera’s coordinate rame using equation
:(1ܬ)

Pc = RP + t.

ܪ Calculate the radial and tangential distortion in the dimensionless coordinates using equations (⑵ܬ) and
.(⑶ܬ) ⒎et [xi, yi]T =

[
Xc

Zc
, Yc

Zc

]T
and r =

√
xi2 + yi2. Then the distorted point pd is given by

pd =

[
xd

yd

]
= (1 + κ1r

2 + κ2r
4)

[
xi

yi

]
+

[
p1(2xiyi) + p2(r

2 + 2xi
2)

p2(2xiyi) + p1(r
2 + 2yi

2)

]
,
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where the Taylor series expansion up to the second order (κ2) is used to approximate the radial distortion.

ܫ ⒈inally, simulate the principal point displacement using the camera intrinsics matrixM rom equation (⑴ܬ)
to obtain the homogeneous coordinates of the projected point pc:

pc = M

[
pd

1

]
↔
[
fxxd + cx

fyyd + cy

]
.

The parameters of this projection model (viz. k1, k2, p1, p2, fx, fy, cx and cy) can be obtained automatically, using
a set of calibration images. A common choice for such calibration objects is a chessboard pattern, as shown in
஁gure .⑷1ܬ

⒉iven the positions of the internal corners of the chessboard pattern in the image i and the prior knowledge that
the points representing these corners should be strictly coplanar, the homography Hi between the object plane
and the image plane can be found for each chessboard image i. Under the no-distortion assumption of the camera,
the intrinsics matrix M can be calculated rom the collected homography matrices Hi either using a closed-
form solution (more prone to noise) or by the maximum-likelihood optimization using the ⒎evenberg-⒏arquardt
algorithm (see ⒜hang (1⑻⑻⑻, ⑴000) for full details).

⒊aving obtained the intrinsic matrix containing focal length and principal point o஀set parameters, the distortion
coeஃcients k1, k2, p1, p2 can be found using the method by Brown (1⑻⑹1). Essentially, the obtained intrinsic
parameters are used to project the chessboard corner points onto the camera’s image plane under the pinhole camera
model. Assuming that the actual distorted locations of these points in the calibration images were produced by the
the radial/tangential distortion model (equations (⑵ܬ) and ,((⑶ܬ) the parameters k1, k2, p1, p2 can be calculated
using a generalized least squares approach (by minimizing the sum of the squares of the distances between the
distorted pinhole projections and the ground-truth positions in calibration images; see Brown (1⑻⑹1) for more
details).

The implementations of ⒎evenberg-⒏arquardt and Brown's approaches for the intrinsic matrix and distortion co-
eஃcient estimation respectively are provided in the open-source computer vision library (⒑penCV, Bradski (⑴000)).
Using this library, the point-and-shoot ⒐ikon C⒑⒑⒎⒒⒋X ⒕⑵100 camera that ⒎uke uses to take pictures is undis-
torted, obtaining an average chessboard corner point re-projection error of 0.658 pixels in ⑷ܫ ⒏⒒ resolution
calibration images (see ஁gure ⑸1ܬ for the example of an undistorted image).

Using these obtained intrinsic and distortion parameters, the points rom the depth point cloud provided by the
⒍inect sensor can be projected into the camera’s image plane. Two example scenes showing the point clouds
projected into the photographs taken with the ⒐ikon C⒑⒑⒎⒒⒋X ⒕⑵100 camera are shown in ஁gure .⑹1ܬ

⒈igure :⑷1ܬ ⒕ample calibration images (4, 320 × 3, 240 pixel resolution) containing a chessboard pattern in various poses,
used for the estimation of photographic camera’s intrinsic matrix and distortion parameters.
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Undistorted

⒈igure :⑸1ܬ An example of an undistorted calibration image, obtained by inverting Brown’s (1⑻⑸⑸) distortion model. ⒐otice
that the straight red line in the images on the let hand side does not go exactly through the corners of the chessboard due to
tangential and radial distortion.

Using a similar approach, the ⑵D locations of the detected heads (provided by the rp_head_tracing node) are
projected onto the photographic camera’s image plane. Then, based on these locations the ideal raming for the
photographs is calculated using the photograph composition heuristics proposed by Dixon et al. (⑴00⑵). These
heuristics are based on the following four photographic composition rules (⒉rill and ⒕canlon, 1⑻⑻0):

• Rule of thirds, which suggests that the points of interest in the scene should be placed at the intersections (or
along) the lines which break the image into horizontal and vertical thirds.

• No middle rule, which states that a single subject should not be placed at a vertical middle line of the
photograph.

• No edge rule, which states that the edges of an ideal rame should not be crossing through the human subjects.

• Occupancy (“empty space”) rule, which suggests that approximately a third of the image should be occupied
by the subject of the photograph.

⒉iven these rules, Dixon et al. de஁ne three di஀erent heuristics for single person and wide/narrow group picture
composition, illustrated in ஁gure .⑺1ܬ ⒋n order to choose which heuristic will be used they employ an iterative
procedure, which starts by identiying a human subject closest to the center of the current image. The ideal raming
for this person is calculated using the single person composition heuristic rom ஁gure .⑺1ܬ ⒋f this rame includes

⒈igure :⑹1ܬ Two scenes with automatically merged ⒔⒉B and depth data rom the photographic camera and the ⒍inect sensor.
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s = 3
2h s = 1

2h s = 3
8w

⒈igure :⑺1ܬ ⒋deal raming of single person and wide/narrow group shots, as proposed by Dixon et al. (⑴00⑵). The composition
rules for the single person/narrow group/wide group shots are shown in the top row of images (let-to-right). ⒋mages in the
bottom row show the photos obtained rom these proposed rames.

other candidate subjects, the group raming rules are applied iteratively on the expanded candidate set, until no new
candidates are added. ⒈igure ⑻1ܬ shows the intermediate rames obtained while composing a group picture using
this procedure.

Ater an ideal rame F is calculated, the rp_raming node calculates the overlap coeஃcient O between the part of
the rame visible in the current image I and the whole rame:

O =
|I ∩ F |
|F | .

a) ⒋teration 1 b) ⒋teration ⑴ c) ⒋teration ⑵ (஁nal rame)

⒈igure :⑻1ܬ ⒋llustration of the iterative raming method for the photo containing multiple human subjects, as described by
Dixon et al. (⑴00⑵). Detected human subjects which are considered at the current iteration are shown in red, subjects which
need to be considered in the next iteration since they are present in the current “ideal rame” are shown in blue, and the
subjects which are detected but can be ignored at the current iteration since they are outside the “ideal rame” are shown in
green rectangles.
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⒋f the overlap coeஃcient O exceeds a given threshold θO and the visible part of the rame exceeds the minimal
width/height thresholds θw×θh, the node considers that the satisying composition has been achieved and publishes
the position/size of the ideal rame over the /rp/raming/rame topic. ⒑therwise, the raming node determines the
direction of where the robot should turn in order to improve the quality of the composition⑶ and publishes these
driving directions over the /rp/raming/driving_direction topic.

⒋n order to prevent the robot rom getting stuck inde஁nitely while trying to achieve an ideal raming, a decaying
temporal threshold for the minimum required overlap θO is used. ⒋n particular, let ∆t be the time that the robot
has already spent trying to rame the picture, max∆t be the maximum allowed time for the picture raming and
max∆O be the maximum deviation rom the ideal overlap that could still be tolerated. Then θO is de஁ned as

θO(∆t) = 1−min
(
max
∆O
× ∆t

max∆t
,max
∆O

)
.

⒋n the current robot photographer’s implementation, the raming time limit max∆t is set to ⑸0 seconds, the maxi-
mum deviation rom the ideal overlap max∆O is set to 50% and the minimum visible rame size thresholds θw×θh
are set to 2, 160 px× 1, 620 px.

The overall behaviour of rp_raming node is visually summarized in a simpli஁ed U⒏⒎ activity diagram in ஁gure
.0⑴ܬ

⒈igure :0⑴ܬ A simpli஁ed U⒏⒎ activity diagram of the photograph composition and raming (rp_raming) ⒔⒑⒕ node.

⑶Based on the position of the ideal rame’s centre w.r.t. the image’s centre.
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Autonomous photography process coordination (rp_autonomous_photography) The rp_autonomous_
photography node coordinates the actual photograph taking/uploading process, and divides the robot’s control time
between the obstacle avoidance (rp_obstacle_avoidance) and raming (rp_raming) nodes.

⒏ore precisely, the behaviour of the rp_autonomous_photography node is split into individual cycles, where at the
end of each cycle a new, well-composed picture is taken. Each cycle divided into two halves: in the ஁rst half the
autonomous photography node instructs rp_navigation node to use the driving direction inputs rom the obstacle
detection and avoidance node. This allows the robot to randomly navigate the environment for a ஁xed amount of
time, and ensures that the robot does not take all pictures rom the same position.

Ater k seconds (where k is the duration of the obstacle avoidance phase, settable at launch or through the ⒔⒑⒕
parameter server) the autonomous photography node gives control to the raming node, which attempts to produce
an aesthetically pleasing picture composition. This is the second half of the picture taking cycle.

As soon as the raming node establishes a satisfactory raming (indicating it by publishing “FRAMED” state message),
the autonomous photography node issues a photo request to rp_camera node. ⒑nce the picture is taken and
downloaded rom the camera to an on-board computer, the autonomous photography node crops out the proposed
rame rectangle and uploads it to ⒈lickr using rp_uploader node. Ater uploading the cropped-out rame, the
autonomous photography node gives the control back to the obstacle avoidance node and a new photograph-taking
cycle is started.

This behaviour is illustrated visually in U⒏⒎ activity diagram in ஁gure .1⑴ܬ

⒈igure :1⑴ܬ A simpli஁ed U⒏⒎ activity diagram of the autonomous photography process coordination
(rp_autonomous_photography) ⒔⒑⒕ node.
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Photograph taking (rp_camera) The photograph taking node (rp_camera) acts as an interface between other
⒔⒑⒕ nodes and the physical ⒐ikon C⒑⒑⒎⒒⒋X ⒕⑵100 camera that ⒎uke uses to take pictures.

To communicate with the photographic camera this node uses the libgphoto2 A⒒⒋ for the open-source g⒒hoto2
(Barbé et al., ⑴00⑴) library, which in turn connects to the camera using the ⒒icture Transfer ⒒rotocol (⒒T⒒).
This node provides access to the camera for the rest of the ⒎uke’s ⒔⒑⒕ graph by exposing a ⒔⒑⒕ service at
/rp/camera/photo. Any other ⒔⒑⒕ node can send an empty request to this service, which rp_camera node transforms
into the photo capture request for the libgphoto2 A⒒⒋. This request triggers a physical camera capture, storing the
taken picture in the camera’s built-in memory. Ater the picture is taken, rp_camera node moves the picture rom
the camera’s memory to the on-board computer and returns the string ஁le name of the downloaded picture via the
service response. This basic behaviour of rp_camera node is visually summarized in .⑴⑴ܬ

This node also exposes a couple of parameters (settable either at launch time or at run-time via the parameter
server), which allow other nodes to modiy basic camera parameters, like the ஂash mode. By default, the ஂash is set
to ஁re for every picture, acting as an additional visual cue of the picture taking moment. Also, while this node can
be used more broadly, at the moment only the rp_autonomous_photography node uses it to take pictures of human
subjects in ⒎uke’s environment.

⒈igure :⑴⑴ܬ A simpli஁ed U⒏⒎ activity diagram of the
photograph taking (rp_camera) ⒔⒑⒕ node.

⒈igure :⑵⑴ܬ A simpli஁ed U⒏⒎ activity diagram of the
photograph uploading (rp_uploader) ⒔⒑⒕ node.

Photograph uploading (rp_uploader) The photograph uploading node (rp_uploader) uses the ⒒ython ⒈lickr A⒒⒋
(⒕tüvel, ⑴00⑹) to upload image ஁les to an online ⒈lickr photo gallery. ⒋t exposes the ⒈lickr A⒒⒋ to the rest of ⒔⒑⒕
graph by providing /rp/uploader/upload ⒔⒑⒕ service.

Any node in ⒎uke’s node graph can send a ⒔⒑⒕ request to this service containing a ஁le name of the picture to
upload. Ater receiving this request the rp_uploader node loads the picture rom the hard drive of an on-board
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computer and uploads it to ⒈lickr; the upload status (success/fail) is returned to the calling node as the service
response (as illustrated in ஁gure .(⑵⑴ܬ ⒑ther parameters of the uploaded photo (like title, description or tags) can
be set through the ⒔⒑⒕ parameter server.

At the moment, only the rp_autonomous_photography node uses the rp_uploader node to upload the taken pho-
tographs.

The internet connection required for the picture uploading is provided by the on-board ⒊TC ⒊D⑹ phone (which
also acts as a robot’s state display) by tethering the phone’s ⑵⒉/ED⒉E data connection over Wi-⒈i to an on-board
netbook which runs the overall ⒎uke’s ⒔⒑⒕ graph.

4.2.3.3 Externalization of the current state via vocal and visual messages

The third and ஁nal behavioural competence of the implemented autonomous photographer robot involves its ability
to externalize the current state via synthesized voice messages (played over the on-board computer’s speakers),
and text messages/⒓⒔ codes (shown on the display of the attached ⒊TC ⒊D⑹ phone). This competence layer is
implemented by three basic ⒔⒑⒕ nodes (rp_state_externalization, rp_speech and rp_display) and aWindows ⒒hone ⑺ܯ
app which is running on the attached phone. Each of these sotware components is brieஂy discussed below.

State externalization (rp_state_externalization) The state externalization node (rp_state_externalization) sub-
scribes to the status outputs rom all major nodes in ⒎uke’s ⒔⒑⒕ graph, in particular, the lomotion
(rp_locomotion), head tracking (rp_head_tracing), raming (rp_raming) and photography process control
(rp_autonomous_photography) nodes.

Each of these nodes can be in one of the following states:

Slocomotion ∈ {NORMAL, PROCESSING_BUMPER_EVENT},
Shead tracing ∈ {GATHERING_FACE_HUE_DATA, DETECTING_HEADS, TRACKING_HEADS},

Sraming ∈ {NO_FRAME, FRAME_OUT_OF_BOUNDS, FRAME_TOO_SMALL, FRAMED},
Sauton. photography ∈ {AVOIDING_OBSTACLES, TAKING_PICTURE, UPLOADING_PICTURE, FRAMING_PICTURE}.

⒈igure :⑶⑴ܬ A simpli஁ed U⒏⒎ activity diagram of the state externalization (rp_state_externalization) ⒔⒑⒕ node.
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⒋n order to produce the robot’s state messages (which are later vocalized/displayed by rp_speech and
rp_display nodes) the state externalization node uses a table of pre-de஁ned text messages, indexed by tuples
(Slocomotion, Shead tracing, Sraming, Sauton. photography). ⒋f the table contains more than one message for a given tuple,
then the message to be produced is chosen uniformly at random rom the matching messages. An excerpt rom
this table is shown in listing A.1 in appendix A.1.

Ater the message texts are chosen for the display/synthesized audio messages, they are published via /rp/s-
tate_externalization/text_message and /rp/state_externalization/vocal_message topics (as illustrated in ஁gure .(⑶⑴ܬ The
nodes responsible for message display and vocalization subscribe to these topics and produce the appropriate outputs,
as described below.

Message display (rp_display) The message display node (rp_display) acts as a proxy between the state external-
ization node and the display attached to the robot’s rame. To provide ⒑⒕ and device independence for the physical
display, this node simply creates a TC⒒ server and sends new messages received rom the state externalization node
to the TC⒒ client (as illustrated in ஁gure .(⑷⑴ܬ

⒈igure :⑷⑴ܬ A simpli஁ed U⒏⒎ activity diagram of the mes-
sage display (rp_display) ⒔⒑⒕ node.

⒈igure :⑸⑴ܬ A simpli஁ed U⒏⒎ activity diagram of message
display Windows ⒒hone ⑺ܯ app.

⒋n the current implementation, an ⒊TC ⒊D⑹ phone is used to show the received messages. This phone has a ⑵ܬ
inch, 480 × 800 pixel ⒎CD display, and is running Windows ⒒hone (W⒒) ⑺ܯ operating system. To show the
messages generated by rp_state_externalization node, a basic message display W⒒ ⒑⒕ app is written. Essentially this
app connects to the rp_display node over TC⒒ and renders received text messages in full-screen mode. ⒋f a hyperlink
is present within the received text message then this app also generates and renders a ⒓⒔ (⒓uick ⒔esponse) code.
This makes it easier for the humans in the robot’s vicinity to follow this link, since any modern phone can use the
phone’s camera to automatically read ⒓⒔ codes.

A couple of screenshots of this app are shown in ஁gure ⑹⑴ܬ and its basic U⒏⒎ activity diagram is shown in ஁gure
.⑸⑴ܬ
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a) b) c)

⒈igure :⑹⑴ܬ ⒕ample screenshots of the robot’s display app
for Windows ⒒hone ܰܯ ⒋mage a) shows the con஁guration
screen which allows this app to connect to the rp_display
node, image b) shows the received and rendered text mes-
sage, and image c) shows both the received text message
and the rendered ⒓⒔ hyperlink code.

⒈igure :⑺⑴ܬ A simpli஁ed U⒏⒎ activity diagram of the
message vocalization (rp_speech) ⒔⒑⒕ node.

Message vocalization (rp_speech) To vocalize the text messages sent by rp_externalization node, the rp_speech
node uses an open-source e⒕peak (Duddington, ⑴00⑸) speech synthesis engine, which in turn is con஁gured to use
a formant⑷ synthesis based approach as described by ⒍latt (1⑻⑺0).

⒋n essence, ⒍latt’s voice synthesizer works in two stages: ஁rst of all, two parallel harmonic signals are produced,
which simulate the vibration of the vocal chords. ⒕econdly, a cascade of low pass, resonance/anti-resonance, additive
and other digital ஁lters is applied to simulate the rest of the vocal tract transfer function, such that the resulting
waveform resembles human speech (see ⒍latt (1⑻⑺0) for more details). ⒕ince this method does not need a database
of speech samples and uses computationally cheap digital signal ஁lters, the resulting text-to-speech engine is both
memory and C⒒U eஃcient, making it highly appropriate for the use in a mobile robot.

The actual rp_speech node acts as a thin wrapper between the e⒕peak engine and the rest of ⒎uke’s ⒔⒑⒕ graph (al-
though in the current implementation only the rp_state_externalization uses this node to generate vocal outputs). ⒋n
particular, the rp_speech node simply subscribes to the messages published in /rp/state_externalization/vocal_message
topic and forwards them to the libespeak A⒒⒋, as visually summarized in ஁gure .⑺⑴ܬ

4.2.4 Computational resource usage of individual nodes

⒋n order to illustrate how C⒒U and memory resources are used by the individual ⒎uke’s nodes, their usage statistics
were gathered over a ten minute sequence of ⒎uke’s operation. These cumulative statistics are presented in ஁gures
⑻⑴ܬ and .0⑵ܬ
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⒈igure :⑻⑴ܬ Cumulative C⒒U usage of ⒎uke’s ⒔⒑⒕ nodes over the ten minute test deployment.
⑷⒈ant (1⑻⑸0) de஁nes formants as “the spectral peaks of the sound spectrum of the voice”.
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⒈igure :0⑵ܬ Cumulative memory usage of ⒎uke’s ⒔⒑⒕ nodes over the ten minute test deployment.

As can be seen rom these charts, obstacle detection/avoidance (rp_obstacle_avoidance) and head detection/tracking
(rp_head_tracing) nodes use the largest amount of the computational resources. ⒈urthermore, the “photograph
raming”/“random wandering” cycles can also be clearly seen, especially rom the C⒒U usage diagram, since during
the “random wandering” cycle the head detection/tracking node is disabled. The memory usage diagram also
illustrates that the memory usage remains relatively constant over this time period, indicating that the nodes do
not have memory leaks.

The qualitative performance of the robot photographer is described in the following chapter, which discusses ⒎uke’s
deployment in a real-world event and thoroughly evaluates the quality of the pictures taken.



Chapter 5

Insights from Robot Photographer’s Deployment in Real-World

This chapter summarizes the experiences rom fluke’s deployment in an unstructured real-world event and provides statistical
evaluation of the pictures taken. The obtained results are compared with the earlier autonomous robot photographer
approaches.

5.1 Autonomous robot photographer deployment at an open-day event

⒋n ⒌une ⑴01⑵ the robot has been deployed at an open-day event for prospective C⒕ undergraduate students in the
Department of Computer ⒕cience, University of ⒑xford. The event was running for two consecutive days and was
attended by more than four hundred prospective students, parents and teachers.

The programme of each day was divided into multiple half-an-hour talks, interview and ⒓&A sessions, given in
lecture theatres and computing rooms. During the occasional ஁teen minute breaks between these events, the
attendees would come out and mingle in the main “atrium” area (shown in ஁gure .(1ܭ The robot photographer
would be active during these breaks, autonomously taking pictures in the unstructured environment.

⒈igure :1ܭ An autonomous robot photographer ⒎uke “in-action” at the open day event in the Department of Computer
⒕cience, University of ⒑xford.

⒈or its successful operation, ⒎uke had to avoid both static obstacles (chairs, tables, presentation stands, walls, etc.)
and dynamic obstacles (viz. attendees, randomly milling about). ⒋n order to ensure ⒎uke’s safe operation, its linear
velocity was limited to 10 cm/s, and the angular velocity was limited to 0.⑷ rad/s. At this speed, the obstacle
detection and avoidance method described in sections ⑴ܫܫ and 1ܫܪܬ performed ஂawlessly, allowing ⒎uke to
avoid any collisions during its operation. The only times when human supervision was required were when ⒎uke
was about to wander out into the corridors leading away rom the atrium. ⒋n these cases ⒎uke was directed back to
the atrium by blocking its path and forcing him to turn around; such interventions were required around once in
every thirty minutes of ⒎uke’s operation.

Due to its relatively slow speed (and noisiness of the environment, which was burying ⒎uke’s audio messages), the
robot oten was able to take candid photographs of the attendees while remaining unnoticed ( just like a human event
photographer would). ⒊owever, some attendees (particularly older parents) indicated that they found the presence
of the robot somewhat unsettling or creepy because of its ability to track people and navigate the environment
autonomously. This could have been caused by the fact that ⒎uke has a very limited set of reactive interaction
skills with humans: most of the times the ⒊⒔⒋ was limited to the attendees blocking the robot’s path, and ⒎uke

⑻⑴
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changing his driving direction to avoid them. At this point, the attendees would notice the message on ⒎uke’s
status display that he is “looking around for good picture locations” (or similar), and leave him alone.

⒋n order to detect and track people based on ⒔⒉B-D data, ⒎uke was using the methods described in sections 1ܫܫ
and .⑴ܫܪܬ Ater some brief initial testing of the ⒍⒎⒔ and Bayesian skin classi஁ers (described in section ,(⑵ܩܫܫ
the latter was found to be performing better in this particular environment and was used for the remainder of ⒎uke’s
two-day deployment.

⒑ver the total ten and a half hour period of ⒎uke’s presence at the open-days, the robot spent three hours and
thirty-seven minutes actively taking pictures (viz. during the breaks between various events). ⒋n total ⒎uke took
10⑵ pictures, approximately one picture every two minutes. The breakdown of these statistics for each day is shown
in table .1ܭ

Day Total robot’s
presence time1

Total duration of
robot’s activity1

⒐umber of
photos taken

Average time
b/t pictures1

Day 1 0⑷:⑴⑸:⑴⑷ 0⑴:11:⑵⑶ ⑷⑹ 00:0⑴:1⑺
Day ⑴ 0⑷:10:1⑸ 01:⑴⑷:⑷⑻ ⑶⑸ 00:01:⑷⑴
Total 10:⑵⑸:⑶1 0⑵:⑵⑹:⑵⑵ 10⑵ 00:0⑴:0⑹
1 ⒋n hh:mm:ss format.

Table :1ܭ ⒕tatistics of ⒎uke’s deployment at an open-day event.

The quality of the pictures was quantitatively evaluated on a ஁ve-point ⒎ikert scale (⒎ikert, 1⑻⑵⑴), and compared
to the results obtained by earlier robot photographers, as presented in the following section.

5.1.1 Evaluation of pictures taken by the robot

⒋n order to quantitatively evaluate the quality of the pictures taken by ⒎uke, sixteen people (unrelated to the project)
were asked to evaluate all 10⑵ pictures using an on-line photo rating tool, developed speci஁cally for this project.
This tool, and the methodology of the rating collection experiment is described below.

5.1.1.1 On-line rating tool for fast photo rating

To streamline the process of photograph rating, an online tool was implemented (shown in ஁gure .(⑴ܭ This tool
enabled participants to rate and navigate through ⒎uke’s photos using simple keyboard shortcuts1.

When participants opened the photo rating web page, the tool displayed two animations explaining the keyboard
shortcuts for assigning photo ratings (viz. keyboard keys “1”–“⑷”) and the shortcuts for navigation between pictures
(viz. let-arrow key “←” to go back to the previous picture and right-arrow key “→” to proceed to the next picture
ater leaving a rating).

Ater this introduction the participants were asked to rate each picture that ⒎uke took on the following ⒎ikert
scale:

Very bad (1), Bad (2), Neutral (3), Good (4), Very good (5).

To reduce the combined perceptual correlations between the neighbouring photographs, all pictures were shown
in a randomized order for each participant of the experiment.

1⒑bviously, participants could also use the mouse to perform the same actions.
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⒈igure :⑴ܭ ⒕creenshots of the developed tool for photo rating on the ஁ve-point ⒎ikert scale.

The tool itself was developed using an industry-standard ⒎A⒏⒒ stack (⒎inux ⒑⒕, Apache ⒊TT⒒ server, ⒏y⒕⒓⒎
DB⒏⒕ and ⒒⒊⒒ programming language). The ront-end U⒋ was powered by the open-source Bootstrap ramework
(Twitter, ⑴01⑵) written in ⒌ava⒕cript, C⒕⒕ and ⒊T⒏⒎. A ⒏y⒕⒓⒎ database was used for the storage of ratings in
the back-end, and the middle layer connecting these components was programmed using ⒒⒊⒒.

Using this tool a set of 1,⑸⑶⑺ ratings was collected (i.e. sixteen ratings on the ஁ve-point ⒎ikert scale for each
picture).

These ratings are thoroughly analysed and compared to the results obtained by other autonomous robot photog-
rapher approaches in the following sections, starting with the examination of reliability of the collected ratings,
described below.

5.1.1.2 Inter-rater agreement measurement

To better understand how reliable are the collected ratings, two statistical methods were applied: the weighted
Cohen’s kappa statistic (Cohen, 1⑻⑸⑺), and a simple percentage agreement. Each of these methods are brieஂy
described below.

Weighted Cohen’s kappa To measure the inter-rater agreement while discounting the agreement between raters
that occurs simply by chance, a weighted Cohen’s kappa statistic can be used. This statistic is calculated in the
following way.

⒎etX = [xi,j ] be the matrix of observed disagreements between the two judges, where xi,j counts the number of
times when the ஁rst judge gave the rating i and the second judge gave the rating j. ⒈urthermore, let W = [wi,j ]

be the quadratic penalty matrix for the disagreement when the ஁rst judge gives rating i and the second judge gives
rating j, with wi,j = (i− j)2.

As described by Cohen, this allows the ratings on the ⒎ikert scale to be treated as ordinal data (i.e. without the
assumption that they are spaced equidistantly), while at the same time accounting for partial disagreements between
the judges on the same picture.

⒋n order to take into consideration the amount of agreement between the judges which would be expected by chance,
let x̂i = [x̂i,r]

T be the vector of cumulative counts when judge i gave rating r. Then the expected disagreement
matrix M = [mi,j ] can be de஁ned as

mi,j =
x̂1,i

||x̂1||1
× x̂2,j =

x̂1,i × x̂2,j
103

,
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where ||x̂1||1 =
∑5

i=1 x̂1,i = 103 is an L1 norm of the cumulative rating count vector x̂1 for the total of 10⑵
pictures.

⒈inally, the weighted Cohen’s kappa statistic can be calculated as

κ = 1−
∑5

i=1

∑5
j=1 xi,jwi,j

∑5
i=1

∑5
j=1mi,jwi,j

,

where κ = 1 indicates an ideal agreement and κ = 0 indicates an agreement which could be completely justi஁ed
by chance. The Cohen’s kappa statistics for each ranker pair are shown in ஁gure .⑵ܭ

Percentage agreement Another statistic calculated for the obtained ratings involved treating the ⒎ikert scale as
an interval scale (i.e. assuming that besides the implicit rank order between the response categories, the intervals
between them are also equal).⑴ To calculate the interval-based agreement between two judges i and j, their picture
ratings are assembled into 10⑵-dimensional vectors ri and rj . Then the cumulative disagreement between these
rating vectors can be calculated as ||ri − rj ||1. ⒕ince the maximum cumulative disagreement ||rmax||1 is equal to
103× (5− 1) = 412, the percentage agreement between judges i and j can be calculated as

100×
(
1− ||ri − rj ||1

||rmax||1

)
= 100×

(
1− ||ri − rj ||1

412

)
.

These percentage agreements between each pair of judges are reported in ஁gure .⑶ܭ
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⒈igure :⑵ܭ The inter-rater agreement coeஃcients mea-
sured using Cohen’s (1⑻⑸⑺) weighted kappa method (with
quadratic weights). The agreement’s strength is indicated by
the blue colour’s intensity (where an agreement arising to-
tally by chance would be indicated by κ = 0 and would be
coloured in white).
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⒈igure :⑶ܭ The inter-rater agreement percentages between
each pair of judges (raters), calculated using the complements
of the cumulative disagreement and a maximum possible dis-
agreement ratios. An ideal agreement would be indicated by
100% (coloured in dark orange), and a complete disagree-
ment would be indicated by 0% (coloured in white).

⒕ince both metrics indicate the reliability of collected ratings, these ratings are compared to the ones obtained by
autonomous robot photographers of Byers et al. (⑴00⑵) and Ahn et al. (⑴00⑸), as described below.

⑴⒐ote that both intervalist/ordinalist views of the ⒎ikert scales and the applicability of parametric/non-parametric statistical analysis
techniques are somewhat controversial (e.g. see the scienti஁c debates in research journals by ⒌amieson (⑴00⑶), Cari஁o and ⒒erla (⑴00⑺) and
⒐orman (⑴010)). The validity of each view-point largely depends on the underlying data that is being categorized by these scales, type of
postprocessing performed on the collected responses (e.g. averaged or summed responses are easier to justiy as being interval-like), overall
size of the surveys and so on. The evaluation performed in this thesis considers the obtained results rom both perspectives.
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5.1.1.3 Comparison to ratings obtained by other robot photographers

⒏ost of the robot photographer development approaches described in the literature and summmarized in chapter
⑴ either did not provide thorough quantitative evaluations of the obtained photographs (including Campbell and
⒒illai (⑴00⑷), ⒍im et al. (⑴010) and ⒕hirakyan et al. (⑴01⑴)) or the approaches were not directly comparable to the
one used in this project (e.g. the robot photographer developed by ⒉adde and ⒍arlapalem (⑴011) was stationary and
took pictures only of static scenes).

⒈or this reason, the results obtained by ⒎uke are compared to the results obtained in the approaches described by
Byers et al. (⑴00⑵) and Ahn et al. (⑴00⑸), who provided the quantitative evaluations of the pictures that their robots
took on the ⒎ikert scales.

To that end, the comparison of photograph proportions in each of the rating categories for each robot photographer
approach are given in table ⑴ܭ and ஁gure ,⑷ܭ and the statistical summary of the results (using both-parametric
and non-parametric statistics) is provided in table .⑵ܭ

Authors/⒔atings Very bad ܕ Bad ܖ ⒐eutral ܗ ⒉ood ܘ Very good ܙ
Byers et al. (⑴00⑵) ⒙0% %0ܭ⑴ ⑴ܰ0% ܼ0% ܱ0%
Ahn et al. (⑴00⑸)† %⑹ܮ %⑷ܫ⑴ %⑹ܪ⑵ %0ܮ⑴ ܳ1%
⒜abarauskas (⑴01⑵)‡ %⑹ܬ ܶ⑸% %⑷ܭ⑴ %⑷ܫ⑵ %⑹ܩ⑴
† Ahn et al. used the following ⒎ikert scale: “Very poor”, “Poor”, “Normal”, “Nice”, “Very nice”.
‡ Work completed and presented in this dissertation.

Table :⑴ܭ ⒒roportion of pictures in each of the rating categories in three di஀erent robot photographer approaches.
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⒈igure :⑷ܭ Visual summary of the proportion of pictures in each of the rating categories in three di஀erent robot photographer
approaches.

As shown in table ⑴ܭ and ஁gure ,⑷ܭ more than half of all pictures taken by ⒎uke were evaluated by humans as being
either “good” or “very good”, and more than ⑺0% were evaluated as “neutral” or better, signi஁cantly outperforming
Byers et al.’s and Ahn et al.’s robots.

To veriy the statistical signi஁cance of the obtained results, both parametric and non-parametric methods are em-
ployed to reject the hypothesis that the real rating means (and therefore the underlying qualities of the pictures
taken by each robot) are equivalent, and the di஀erences observed in the individual rating sets (as summarized in
table ஁gure/⑴ܭ (⑷ܭ arise purely by chance.

⒈irst, a parametric test based on one-way analysis of variance (A⒐⒑VA, ⒈isher (1⑻⑴⑶)) is performed on all three
rating sets (viz. the ones obtained by Byers et al. (⑴00⑵), Ahn et al. (⑴00⑸) and ⒜abarauskas (⑴01⑵)) simultane-
ously.

This approach is slightly controversial because some researchers consider ⒎ikert scales only as ordinal data. ⒕uch
data should therefore be analysed with non-parametric methods, while A⒐⒑VA assumes normal distribution of
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Authors Central tendency Variability
⒏ean ⒏edian ⒏ode ⒕tandard

deviation
⒋nter-quartile

range
Byers et al. (⑴00⑵)† ⑹⑹ܪ ⒉ood ܗ ⒉ood ܗ ⑴⑴ܩ ⑴
Ahn et al. (⑴00⑸) 11ܫ ⒉ood ܗ ⒉ood ܗ ⑻0ܩ ⑴
⒜abarauskas (⑴01⑵) ⑵⑷ܫ Very good ܘ Very good ܘ ⑴1ܩ 1
† ⒕ince Byers et al. mention that around ⑴,000 photographs were evaluated (without speciying the exact number), the
comparisons in the following sections assume an exact rating count of ⑴,000.

Table :⑵ܭ Comparison of parametric and non-parametric statistics of the pictures taken by di஀erent robot photographers.

responses and thus it is a parametric technique. ⒊owever, more recent literature argues for the applicability of such
techniques when analysing ⒎ikert scale responses. ⒈or example, Cari஁o and ⒒erla (⑴00⑺) state that “it is perfectly
appropriate to summarise the ratings generated rom flikert scales using means and standard deviations, and it is perfectly
appropriate to use parametric techniques like Analysis of Variance to analyse flikert scales.”

Another requent criticism of A⒐⒑VA’s use for ⒎ikert scale analysis is that while the original A⒐⒑VA test assumes
the normality of the response variable distribution, the ⒎ikert scale responses tend to be skewed. ⒊owever, as noted
by ⒍irk (1⑻⑻⑷) (and others), A⒐⒑VA is relatively robust w.r.t. violations of this assumption. This is also suggested
by ⒐orman (⑴010), who counters these two common criticisms by stating that “parametric statistics can be used with
flikert data, […] and with non-normal assumptions, with no fear of “coming to the wrong conclusion.”

⒋n the light of these arguments, the details of the A⒐⒑VA method (within the context of multiple sets of picture
ratings) are described below.

A one-way analysis of variance (ANOVA) ⒋n A⒐⒑VA test, the real quality of the pictures taken by each robot is
modelled by an underlying random variable, where individual samples of this underlying variable (with an associated
sampling error) are obtained by rating pictures that the robot took. (To that end, it is assumed that both the judges
and the ratings are independent rom each other, i.e. the rating of a given picture by one judge does not a஀ect another
judge’s rating of the same picture in any way, and, similarly, that for a given judge, rating one picture does not
a஀ect the rating for another picture.) Then, the variance between the mean ratings of each set is compared to the
variance between individual ratings. ⒋f the ratio of these variances is high enough (i.e. unlikely to occur by chance),
then A⒐⒑VA test considers that photo ratings must have come rom distributions which have suஃciently di஀erent
mean ratings. This implies that if A⒐⒑VA’s null hypothesis of equal underlying population means is rejected, then
there is statistical di஀erence between the real picture quality for each of the robots.

⒋n particular, A⒐⒑VA test for photo ratings works as follows. ⒎et xi,j be the observed rating for photo j in the
rating set i (where each set contains ni ratings and there are S sets in total). ⒈urthermore, let the unbiased estimate
of the mean of rating set i be x̄i =

∑
j xi,j

ni
, and the unbiased estimate of rating set i’s variance be s2i =

∑
j(xi,j−x̄i)

2

ni−1 .
⒕imilarly, let x̄ =

∑
i,j xi,j

N
be the unbiased estimate for the mean of combined rating sets, obtained by pooling

together ratings rom all sets (where N =
∑

i ni). Then the “sum of squares” measure between the rating sets can
be calculated as

SSbetween =
∑

i

ni(x̄i − x̄)2,

and the “sum of squares” measure within the rating sets can be computed as

SSwithin =
∑

i

s2i (ni − 1).
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The F -score for the A⒐⒑VA test can be calculated as a ratio of the mean squares between and within the rating
sets (where a mean square is de஁ned as the sum of squares divided by its degrees of reedom), namely:

F =
SSbetween/dfbetween
SSwithin/dfwithin

=
(N − S)∑i ni(x̄i − x̄)2
(S − 1)

∑
i s

2
i (ni − 1)

, (1ܭ)

where dfbetween = S − 1 and dfwithin = N − S.

To be able to reject the null hypothesis (viz. the equality of mean ratings for all S rating sets), F -score has to exceed
the critical value threshold F crit

dfb.,dfw.
(α) = F crit

S−1,N−S(α) for a desired signi஁cance level α, where F crit
S−1,N−S is

the inverse of a cumulative distribution function (CD⒈) of F -distribution⑵ with S − 1 and N − S degrees of
reedom.

⒋n order for A⒐⒑VA test to be applicable (besides the independence assumption described above), the responses
ideally should be normally distributed. While it is not obvious whether the rating sets by ⒜abarauskas (⑴01⑵),
Ahn et al. (⑴00⑸) and Byers et al. (⑴00⑵) satisy this condition, they are also not extremely skewed (the kurtosis
of each set respectively is −0.614, −0.71 and −0.92; it can also be seen by visual inspection of the let half of
஁gure .(⑷ܭ Due to the fact that A⒐⒑VA test is not extremely sensitive to non-normality, it is still considered to
be applicable.

⒊owever, a standard A⒐⒑VA test also relies on homoscedasticity⑶ of the rating sets. ⒕ince the variances of the
rating sets collected by ⒜abarauskas (⑴01⑵), Ahn et al. (⑴00⑸) and Byers et al. (⑴00⑵) are ,1⑸⑴ܩ ⑺⑻1ܩ and ⑺⑹⑶ܩ
respectively, it is unlikely that the homoscedasticity condition holds in this situation. To mitigate this problem, an
A⒐⒑VA-based F ⋆ test by Brown and ⒈orsythe (1⑻⑹⑶a) ⑷ is used, which is designed for sample sets with non-equal
variance (and is less sensitive to non-normality than the regular A⒐⒑VA test). This test is described in more detail
below.

Brown-Forsythe F ⋆ test To test whether all three rating sets have equal means, given that they have unequal
variances, the Brown and ⒈orsythe (1⑻⑹⑶a) test rede஁nes the F -score rom the equation 1ܭ as

F ⋆ =
SSbetween∑
i s

2
i

(
1− ni

N

) =

∑
i ni(x̄i − x̄)2∑
i s

2
i

(
1− ni

N

) , (⑴ܭ)

where the critical value threshold F crit
S−1,dfwithin

(α) for a desired signi஁cance level α is obtained rom the same CD⒈
inverse ofF -distribution. ⒊ere the degrees of reedomwithin the rating sets dfwithin are derived rom ⒕atterthwaite’s
(1⑻⑶1) equation as

dfwithin =

(
∑

i

c2i
ni − 1

)−1

where ci =

(
1− ni

N

)
s2i∑

j

(
1− nj

N

)
s2j
.

⒔unning the F ⋆ test on the rating sets obtained by Byers et al. (⑴00⑵), Ahn et al. (⑴00⑸) and ⒜abarauskas (⑴01⑵)
produces an F ⋆ score of 199.84. ⒈or the p-value of 0.0001, the critical value F crit

2,4212.1(0.9999) = 9.23. ⒕ince
F ⋆ ≫ F crit

2,4212.1(0.9999), the probability that the null hypothesis of equal means for these rating sets holds is
smaller than 0.0001, and hence it is rejected under this level of signi஁cance.

⑵Also known as ⒈isher-⒕nedecor distribution.
⑶Also known as the homogeneity/equality of variances.
⑷
F

⋆ test is used for the equality of means and should not be confused with a di஀erent Brown and ⒈orsythe (1⑻⑹⑶b) test for the equality
of variances.
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Due to some degree of controversiality regarding the use of A⒐⒑VA with data obtained using ⒎ikert scales, the
same hypothesis is tested using a non-parametric version of one-way analysis of variance by ⒍ruskal and Wallis
(1⑻⑷⑴). This test is described below in more detail.

Kruskal-Wallis one-way analysis of variance ⒋n contrast to the original A⒐⒑VAmethod (as described above), the
test proposed by ⒍ruskal and Wallis (1⑻⑷⑴) does not assume an underlying normal distribution or the homogeneity
of variances. ⒋t works in the following way.

⒈irst, all N ratings rom all rating sets are pooled together and ranked, yielding ranks ri,j where j is a rating
rom the rating set i. ⒋f k ratings are tied for the ranks n + 1, ..., n + k, they are assigned the average rank
1
k

∑k
i=1(n+ i) = n+ k+1

2 .

⒎et r̄i =
∑

j ri,j

ni
be the average rank in the rating set i and r̄ =

∑
i,j ri,j

N
= N+1

2 be the average rank of all ratings
in the pooled rating set. Then the equation (1ܭ) is re-de஁ned to use the ranks of the ratings (instead of the actual
ratings) as

K = (N − 1)

∑
i ni(r̄i − r̄)2∑
i,j(ri,j − r̄)2

. (⑵ܭ)

⒕inceK approximately follows the chi-squared distribution with S−1 degrees of reedom (i.e. K ∼ χ2
S−1, where

S is the number of rating sets), the obtainedK-score can be used to reject the null hypothesis (viz. the equality of
mean ranks of ratings for all S rating sets) if it exceeds the critical value Kcrit

S−1(α) for a desired signi஁cance level
α. ⒊ere Kcrit

S−1 is the inverse CD⒈ for χ2
S−1 distribution.

⒒erforming this test on Byers et al.’s, Ahn et al.’s and ⒜abarauskas’ rating sets results in a K score of 353.12. ⒈or
the p-value of 0.0001, the critical valueKcrit

2 (0.9999) = 18.42. ⒕ince K ≫ Kcrit
2 (0.9999), the null hypothesis of

equal mean ranks of ratings is also rejected using this non-parametric method (as summarized in table .(⑶ܭ

⒕tatistical test Test score Critical score
(p = .0001)

⒐ull hypothesis Decision

⒒arametric
(Brown-⒈orsythe)

F ⋆ = 199.8352 F crit = 9.2305 “⒏eans of underlying rating popula-
tions are equal.”

⒔ejected

⒐on-parametric
(⒍ruskal-Wallis)

K = 353.1212 Kcrit = 18.4207 “⒏ean ranks of underlying rating
populations are equal.”

⒔ejected

Table :⑶ܭ ⒒arametric and non-parametric statistical test results for the signi஁cance of the similarity between Byers et al.
(⑴00⑵), Ahn et al. (⑴00⑸) and ⒜abarauskas (⑴01⑵) rating sets.

⒉iven these results, the following section examines each rating set pair individually to determine which of the robot
photographer approaches produce statistically signi஁cant di஀erences in picture quality.

5.1.1.4 Post-hoc testing for signiϒcant diϑerences between rating set pairs

⒕ince both parametric and non-parametric tests con஁rm statistically signi஁cant di஀erences between the rating set
means simultaneously (at p = .0001 con஁dence level), but they do not speciy whether (and which) individual
pairs of rating sets come rom di஀erent underlying distributions, a number of pair-wise post-hoc tests are per-
formed.
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⒈irst of all, each pair of rating sets is compared using a version of parametric ⒕tudent’s t-test (⒉osset, 1⑻0⑺). This
test can be used to reject the null hypothesis that the underlying populations rom which the two rating sets have
been sampled actually have equal mean ratings, and the observed di஀erences arise purely by chance. ⒊owever, this
test also assumes homoscedasticity, which (as discussed) above cannot be easily shown for the rating sets. While
it is relatively insensitive to violations of this assumption when the sample sizes are equal, it is not very robust in
presence of unequal variances and unequal sample sizes. Welch (1⑻⑶⑹) proposes a version of ⒕tudent’s t-test, which
is insensitive to unequal variances even for di஀erent-size samples. This version of the t-test is described in more
detail below.

Welch’s t-test To check whether unequal means observed between individual pairs of rating sets could have
arisen by chance, the modi஁ed t-test (as described by Welch (1⑻⑶⑹)) is employed. Besides the assumption for
rating independence within/between rating sets, this test also requires that the means of the rating sets would be
distributed normally. ⒕ince each set contains more than a 1, 000 pictures, it is assumed that this requirement is
satis஁ed by the central limit theorem. ⒈urthermore, as described above, this test is robust to unequal variances and
di஀ering sample sizes. ⒋t works in the following way.

As earlier, let x̄i =
∑

j xi,j

ni
and s2i =

∑
j(xi,j−x̄i)

2

ni−1 be the unbiased estimates of rating set i mean/variance
respectively, where ni is the size of rating set i. Then the t-score, de஁ned as

t =
x̄1 − x̄2√

(s21/n1) + (s22/n2)
(⑶ܭ)

is distributed following the ⒕tudent’s t distribution with

ν =

(
s21
n1

+
s22
n2

)2
(

s21
n1

)
/(n1 − 1) +

(
s22
n2

)
/(n2 − 1)

. (⑷ܭ)

degrees of reedom. (⒊ere ν is approximated using the Welch-⒕atterthwaite equation, since it arises rom a linear
combination of individual rating set variances.)

Ater the t-scores are obtained for each of the rating set pairs, they are individually compared to the critical
value tcritν (α) at the signi஁cance level α, where tcritν is calculated rom the inverse CD⒈ F−1

ν of the ⒕tudent’s
t-distribution.

⒕ince the null hypothesis assumes that the real means of the underlying rating populations are equal, the rejection
of this hypothesis could come rom either “tail” of the symmetrical t-probability distribution, hence the critical
value for a speci஁ed statistical signi஁cance level α is calculated rom

⒒rν(|t| ≤ tcritν ) = α⇔

1− 2⒒rν(|t| > tcritν ) = α⇔

tcritν = F−1
ν

(
α+ 1

2

)
.

To avoid inஂating the Type ⒋ error⑸ by performing repeated null hypotheses tests, the Bonferroni correction (Dunn,
1⑻⑸1) is used. ⒋n particular, since three tests are required to check each pair of the rating sets for the equality of their

⑸⒔ejecting the null hypothesis when it in fact holds.
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means, the p-value of 0.0001 (as used above) is discounted by a factor of three, viz. p = 0.0001/3 = 0.0000333

and thus α = 99.9967%. ⒈or this level of statistical signi஁cance, Welch’s t-test rejects the null hypotheses of mean
equality for each of the rating set pairs, as summarized in table .⑷ܭ

⒕ince Welch’s t-test interprets the ⒎ikert scales as interval data (which is somewhat controversial, as discussed
above), the same post-hoc tests are repeated using a non-parametric analogue of t-test as proposed by ⒏ann and
Whitney (1⑻⑶⑹).

Mann-Whitney U test⑹ To compare the rating set pairs using the non-parametric techniques, the test described
by ⒏ann and Whitney (1⑻⑶⑹) is used. ⒋n contrast to Welch’s t-test, this test does not assume interval data (i.e. it
can be straight away applied to ordinal data, like ⒎ikert scales).

⒏ann-Whitney’s U test can be used to refute similar null hypothesis as the Welch’s t-test (viz. the assumption that
the two rating sets containing n1 and n2 ratings come rom the same distribution) in the following way.

⒈irst of all, n1 + n2 ratings rom both rating sets are ranked collectively, yielding ranks ri,j for each rating
j ∈ {1, ..., ni} rom each rating set i ∈ {1, 2}. Tied ranks are assigned the average rank, like in ⒍ruskal-Wallis
method above. ⒎et ri =

∑
j ri,j be sum of all ranks in rating set i. Then the U-score can be calculated as

U = min
{
n1n2 +

n1(n1 + 1)

2
− r1, n1n2 +

n2(n2 + 1)

2
− r2

}
.

⒉iven that for the large n1, n2 values U ∼ N (µ, σ), with µ = n1n2
2 , σ =

√
n1n2(n1+n2+1)

12 , the critical value
U crit(α) for null hypothesis rejection with the signi஁cance level α can be found using the inverse CD⒈ of the normal
distribution with parameters µ and σ, i.e. U crit(α) = Φ−1

µ,σ(α). Under the same Bonferroni correction, p-value of
0.0001/3 is chosen for each test of a rating set pair. ⒈or this level of statistical signi஁cance, ⒏ann-Whitney U test
also rejects the “equal distribution” null hypotheses for each of rating set pairs, as summarized in table .⑷ܭ

⒕tatistical test ⒔ating set
pair

Test score Critical score
(p = .000033)

⒐ull hypothesis Decision

⒒arametric
(Welch’s t-test)

⒜abarauskas,
Ahn et al.

t = 9.4661 tcrit = 4.1578

“⒏eans of underlying
rating populations
are equal.”

⒔ejected

⒜abarauskas,
Byers et al.

t = 19.543 tcrit = 4.1547 ⒔ejected

Ahn et al.,
Byers et al.

t = 7.8988 tcrit = 4.1576 ⒔ejected

⒐on-parametric
(⒏ann-Whitney
U-test)

⒜abarauskas,
Ahn et al.

U = 675343 U crit = 778807.65

“Underlying rating
populations have
similar distribution.”

⒔ejected

⒜abarauskas,
Byers et al.

U = 1079750 U crit = 1521749.9 ⒔ejected

Ahn et al.,
Byers et al.

U = 872000 U crit = 948443.07 ⒔ejected

Table :⑷ܭ ⒒arametric and non-parametric statistical test results for the signi஁cance of the pairwise similarity between Byers
et al. (⑴00⑵), Ahn et al. (⑴00⑸) and ⒜abarauskas (⑴01⑵) rating sets.

⑹Also known as Wilcoxon rank-sum test.
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5.2 Summary

⒋n this chapter, ⒎uke’s deployment at an open-day event in the Department of Computer ⒕cience, University of
⒑xford was described. During the three and a half hours of active photo shooting, the robot took 10⑵ pictures, i.e.
roughly one picture every two minutes. ⒈or evaluation, each of these pictures were rated by sixteen judges unrelated
to the project. ⒏ore than half of the pictures were rated as being “good ”ܘ or “very good ”ܙ on a ஁ve-point
⒎ikert scale, markedly exceeding the results reported by Byers et al. (⑴00⑵) and Ahn et al. (⑴00⑸). To con஁rm the
statistical signi஁cance of these ஁ndings, both parametric (one-way A⒐⒑VA and pairwise Welch’s t-tests) and non-
parametric measures (⒍ruskal-Wallis and pair-wise ⒏ann-Whitney U-tests) were taken. At p = .0001 signi஁cance
level, both types of tests indicated statistically signi஁cant di஀erences between the obtained results.

Very good (5)︷ ︸︸ ︷

Good (4)︷ ︸︸ ︷

Neutral (3) Bad (2) Very bad (1)︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

⒈igure :⑸ܭ ⒎uke’s photographs with the largest rating count in each of the categories.



Chapter 6

Conclusions and Proposals for Further Research

This मnal chapter summarizes the work completed in this dissertation, sums up the contributions of this thesis to the मeld of
autonomous robot photography, and outlines the potential directions for future research.

6.1 Summary of completed work

As discussed in Chapter 1, autonomous robot photographers serve as excellent low-cost robotics research platforms,
encompassing diஃcult multidisciplinary challenges. ⒊owever, all such systems described in the scienti஁c literature
within ⑴00⑵–⑴01⑵ (since the earliest robot photographer, to the present day, as summarized in Chapter ⑴) rely
on ⒔⒉B cameras for their vision and laser range/inrared/ultrasound sensors for obstacle detection and avoidance.
Each of these devices have their own disadvantages w.r.t. low-cost and ubiquitous ⒔⒉B-D sensors (as summarized
in Chapter ⑵), and a number of autonomous robot systems, ranging rom robotic wheelchairs (Wu et al., ⑴01⑵) to
home-service “robot butlers” (⒕tückler and ⒕te஀ens, ⑴011), have already adopted ⒔⒉B-D sensors for their vision
systems. ⒋t was these recent developments of ⒔⒉B-D sensors and their applications to di஀erent autonomous robots
that inspired the investigation into how such sensors could be used to improve the state-of-the-art performance of
autonomous robot photographers.

This project proposed ⒔⒉B data-based solutions for both of the main challenges of robot photographers, viz.
human subject detection/tracking and obstacle detection/avoidance. To make an informed decision, an extensive
survey of both approaches based on ⒔⒉B-D (separate and combined) data has been performed and presented
in Chapter ܫ The following solutions have been proposed based on their applicability to ⒔⒉B-D data, their
computational eஃciency, keeping in mind the processing power and energy constraints imposed by mobile robotics,
and their feasibility for implementation during the project’s timerame.

6.1.1 Contributions to the ϒeld of autonomous robot photography

Human subject detection/tracking ⒈or human subject detection in depth data, this thesis proposed an extension
of ⒉arstka and ⒒eters’ (⑴011) knowledge-based head localization method. This extension enabled simultaneous
multiple head detection in depth data, as described in section .⑴ܩܫܫ

To increase the accuracy of this approach, this thesis also proposed a novel method for detected “candidate” head
veri஁cation using ⒔⒉B data. ⒋n particular, this method employed a Viola and ⒌ones (⑴001) face detector cascade to
gather a small set of skin/background training examples for every new environment that the robot was deployed in.
⒋t then used these examples to train the discriminative logistic regression classi஁er with ⒔B⒈ kernel on-the-spot,
as discussed in section .⑵ܩܫܫ

This thesis also presented and incorporated an already existing skin-classi஁cation approach for depth-based head
detection veri஁cation using ⒔⒉B data. ⒋n this approach a histogram-based Bayesian skin classi஁er was trained
on a large-scale supervised data set, containing almost a billion of skin/non-skin training examples, following the
description of ⒌ones and ⒔ehg (⑴00⑴).

⒎astly, to increase the eஃciency of the proposed ⒔⒉B-D head detection approach and to reduce the impact of noise
in the sensor’s ⒔⒉B-D stream, this thesis also proposed a new depth-based extension of the continuously-adaptive

10⑵



6.2. CURRENT APPROACH flIffiITATIONS AND DIRECTIONS FOR FUTURE RESEARCH 10⑶

mean-shit tracker (Bradski, 1⑻⑻⑺), yielding an eஃcient method of tracking detected human heads in depth data
over a sequence of input rames (see section .(⑶ܩܫܫ

Obstacle detection To enable the robot photographer’s “random wandering” mode, Boucher’s (⑴01⑴) depth-based
obstacle detection and avoidance method was chosen. This method was combined with ⒒easley and Birch஁eld’s
(⑴01⑵) heuristic for close-range obstacle avoidance. With only minor modi஁cations (like the incorporation of the
accelerometer’s data rom the ⒍inect sensor, and feedback rom the bumpers on the robot’s base) this combined
method proved to be robust and eஃcient enough to be used in an unstructured environment, under a ஂat ground
assumption.

6.1.2 Implementation and evaluation of the proposed methods

The methods described above were implemented within an open-source ⒔obot ⒑perating ⒕ystem ramework
(⒓uigley et al., ⑴00⑻), based on Brooks’ (1⑻⑺⑸) behaviour-based architectural design (as thoroughly described
in Chapter ⑶), achieving suஃcient performance for real-time applications on modest con஁guration on-board net-
books/laptops/⒒Cs1.

To test this sotware in real-world situations, a physical robot has been built using an open-source hardware
platform (available o஀-the-shelf, or as a construction kit), a simple point-and-shoot photographic camera and a
low-cost ⒔⒉B-D ⒏icrosot ⒍inect sensor. ⒑nly a஀ordable and widely available (or interchangeable) parts were
used in robot’s construction to promote reproducibility of the results and facilitate research on autonomous mobile
robots both within and outside academia.

The developed autonomous photographer robot “⒎uke” has been deployed in an unstructured open-day event, as
described in Chapter ܭ During this event, ⒎uke took more than a hundred pictures, shooting a new photograph
roughly every two minutes of its operation. All taken pictures were evaluated by sixteen judges (unrelated to the
project), yielding a total of 1,⑸⑶⑺ ratings which were determined to be suஃciently reliable by inter-rater agreement
measurements.

⒏ore than half of ⒎uke’s pictures were rated by judges as being “good” or “very good” on a ஁ve-point ⒎ikert scale,
markedly exceeding the results reported by Byers et al. (⑴00⑵) and Ahn et al. (⑴00⑸). The statistical signi஁cance
of these results has been con஁rmed by both parametric (one-way A⒐⒑VA and pairwise Welch’s t-tests) and non-
parametric tests (⒍ruskal-Wallis and pair-wise Whittney U-tests) at p = .0001 signi஁cance level.

Based on these results, the project is considered to have achieved all proposed aims and satis஁ed all success criteria
set out in section .⑶ܩ

The following ஁nal section of this thesis describes some limitations of the current approach, and proposes directions
for further autonomous robotic photographer research.

6.2 Current approach limitations and directions for future research

As discussed earlier, the proposed methods for human subject detection/tracking and obstacle detection/avoidance
were chosen due to their computational eஃciency (enforced by the simplicity of the on-boards netbook) and
feasibility to be implemented within the project’s timerame. While the proposed ⒔⒉B-D data based methods

1The source code of the implemented robot photographer will be available ater the submission of this thesis at
http://zabarauskas.com/robot-photographer.

http://zabarauskas.com/robot-photographer
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a) b) c)

⒈igure :1ܮ ⒒otential application of ⒍inect’s inrared camera/projector pair for close obstacle detection. ⒋mage a) shows the
⒔⒉B input rom ⒍inect’s colour camera, image b) shows the corresponding depth image, with missing depth data coloured in
purple, and image c) shows the ⒍inect’s inrared camera image of the same scene. ⒐otice that while the depth data missing
due to nearby obstacles/out of range parts of the scene is indistinguishable in the depth image, the projected inrared stuctured
light pattern on the nearby obstacle is clearly visible in image c) (c.f. with the intensity of this pattern when projected on the
far wall).

were suஃciently e஀ective to advance the current state-of-the-art in autonomous robotic photography, additional
improvements to these approaches could further enhance the performance of robot photographers.

⒋n particular, improving human subject detection and tracking should directly lead to the enhancements in the
quality of taken pictures. This is because the photo composition approach described by Dixon et al. (⑴00⑵) directly
depends on the accuracy of human localization in the photographic camera’s image plane; indeed, the majority of
badly rated pictures in this thesis were aesthetically unpleasant because of incorrectly located human subject heads
in ⒔⒉B-D image.

⒔egarding the obstacle detection and avoidance, most of the limitations in the described approach stem rom
the hardware constraints of the ⒍inect sensor. ⒈or example, the visible depth range of the sensor is between
∼0.⑹m–0ܬm, which implies that any obstacles closer than ⑹0 centimetres to the sensor cannot be detected. By
attaching ⒍inect towards the back of the robot’s base, the “blind” area in ront of the robot can be reduced to around
⑶0 centimetres.

While the presence of large obstacles in this area can be approximated rom the loss of depth readings, this can
lead to false positive obstacle detections (which is not too severe for “random wandering” mode). ⒊owever, small
obstacles cannot be detected even using these heuristics, and thus other sources of information, like bumper sensors,
have to be used.

Two potential approaches can be taken to mitigate this problem: the ஁rst approach would be to attach another
⒔⒉B-D sensor in ront of the robot, facing downwards rom around ⑹0 centimetre height. This would not cause
any ⒋⒔ interference with the sensor used for human detection/tracking, and would eliminate any blind spots in
ront of the robot. ⒑f course, other inexpensive sensors (e.g. ultrasound) could also be used for this task.

Another, more interesting solution for obstacle detection in ⒍inect’s blind zone is to exploit the embedded ⒋⒔
projection/capture technology that ⒍inect sensor uses to infer depths in the scene.

⒋n particular, data loss in the depth image can occur due to objects being too far or too close to the sensor; these
cases are indistinguishable in the retrieved depth data. ⒊owever, the structured light pattern emitted by ⒍inect’s
⒋⒔ projector is clearly visible in the sensor’s ⒋⒔ camera image on the obstacles positioned closer than ⑹0 centimetres
to the sensor, and, conversely, this light pattern has very low intensity when projected on objects further than
the far-range limit of the sensor (i.e. further than ⑶ metres), as shown in image .1ܮ Using image processing
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a) b) c) d)

⒈igure :⑴ܮ ⒒otential approach for inrared data combination with the depth data for obstacle avoidance. ⒋mage a) shows the
raw inrared input rom ⒍inect’s ⒋⒔ camera, image b) shows this image ater convolution with a ⒉aussian kernel, image c)
shows the result obtained ater intensity thresholding and image d) shows the combined depth and processed ⒋⒔ images for
obstacle detection.

and/or machine learning techniques (with the basic example illustrated in ஁gure ,(⑴ܮ this property could be used
to discriminate between these two cases.

Another signi஁cant hardware constraint of ⒍inect device is its limited vertical ஁eld-of-view (∼⑶⑷◦). When the same
device is used both for obstacle and human subject detection, it imposes a diஃcult trade-o஀ between the closest
distance at which both the standing humans and the objects lying on the ஂoor plane can be detected, as illustrated
in ஁gure .⑵ܮ ⒒ossible solutions to this problem include mounting the ⒍inect sensor sideways (resulting in a vertical
∼⑷⑺◦ ⒈⒑V, but limiting the number of people visible horizontally at the same time), or using an additional sensor
for obstacle detection, as described above.

⒕ome further improvements of robot photographers could include proactive navigation planning. ⒋n particular, the
robot could attempt to actively predict the locations in the environment which could yield good quality pictures
based on last known positions of humans and try to navigate there. ⒕imilarly, landmark-tracking based localization
systems could be integrated into the architecture to ensure that the robot does not wander outside of the designed
photography area (basic implementations of both of these capabilities were described by Byers et al. (⑴00⑵)).

⒈inally, a number of improvements to robot photographers could be made in human-robot interaction (⒊⒔⒋) area.
As described by ⒕mart et al. (⑴00⑵), an event photographer robot should be capable of bimodal interactions: in the
஁rst mode (as presented in this thesis), an event photographer robot should remain relatively “inconspicuous” in
the environment and take candid pictures of the subjects. ⒋n the second mode, users could drive the interaction
with the robot by asking and giving instructions to the robot as to what pictures they would like to be taken. As a
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⒈igure :⑵ܮ The shortest distances at which a 0.25 cm obstacle on the ground ஂoor and the 1.8 m height human can be
detected, as a function of ⒍inect’s tilt angle (where the sensor parallel to the ஂoor would have the tilt angle equal to zero,
tilted towards the ceiling would have a positive tilt angle, and tilted towards the ஂoor would have the negative tilt angle).
These distances are presented for normal sensor’s orientation as mounted on ⒎uke (yielding around ∼⑶⑷◦ vertical ⒈⒑V) and
the possible sideways orientation (yielding ∼⑷⑺◦ vertical ⒈⒑V).
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simple example, if humans wave towards a robot randomly wandering about, the robot should direct its attention to
them, approach the callers and take their picture. ⒋n more sophisticated versions of this reactive interaction mode,
the robot should estimate the subject’s intentions rom more subtle cues, like the eye gaze, or speed/direction of
movement.

⒋n fact, ⒊⒔⒋ research area is of special importance to autonomous robot photographers. As noted by Byers et al.
(⑴00⑵), their applicability to this ஁eld stems rom the fact that they perform a task which is i) understandable
rom the ஁rst glance, and ii) has a natural application in environments ஁lled with humans. This simplicity of their
functional purpose makes them approachable by people of various ages, education levels and general backgrounds,
and invokes a variety of natural human-robot interactions. Due to this richness of naturally occurring interactions
between them and humans, research into ⒊⒔⒋ aspects of autonomous robot photographers has potential to lead to
completely novel ⒊⒔⒋ results. As the autonomous robots are slowly but surely making their way into our everyday
lives (rom vacuuming robots, to self-driving cars), this research is becoming more and more important.



Appendix A

A.1 Luke’s State Externalization Messages

This section provides an excerpt rom the state externalization table that ⒎uke uses to generate vocal and text
messages to communicate its state to humans, as discussed in section .⑵ܫܪܬ

Slocomotion Shead tracing Sauton. phot. Sraming ⒏essage
PROCESSING_

BUMPER_EVENT

X X X “⒕orry!”

“Apologies!”
“⒏y bad, sorry!”

¬PROCESSING_
BUMPER_EVENT

GATHERING_

FACE_HUE_DATA

X X “⒋’ll learn the room’s lighting conditions.”

“⒋’ll look for the light sources in the room.”
¬PROCESSING_
BUMPER_EVENT

¬GATHERING_
FACE_HUE_DATA

AVOIDING_

OBSTACLES

X “⒋’ll just look around for a few moments…”

“⒋’ll go and take some pictures rom another an-
gle…”
“⒋’ll take a small break for a few moments…”

¬PROCESSING_
BUMPER_EVENT

¬GATHERING_
FACE_HUE_DATA

TAKING_

PICTURE

X “⒕mile, ⒋’m taking a picture!”

“⒎ook at the camera, ⒋’m taking a picture!”
“⒎ook up, ⒋’m taking the picture!”
“⒋’m taking the picture, say cheese!”

¬PROCESSING_
BUMPER_EVENT

¬GATHERING_
FACE_HUE_DATA

UPLOADING_

PICTURE

X “Thank you! ⒋’m saving the picture now…”

“Thanks, the photograph looks perfect! ⒋’m sav-
ing it…”
“Thank you, that looks really good! ⒎et me save
it…”

¬PROCESSING_
BUMPER_EVENT

¬GATHERING_
FACE_HUE_DATA

FRAMING_

PICTURE

FRAME_

TOO_SMALL

“⒛ou’re too far, ⒋’m coming closer.”

“⒊old on, ⒋’ll come a bit closer.”
“⒛ou’re too far. ⒊old on a second.”
“⒋ need to come a bit closer…”

¬PROCESSING_
BUMPER_EVENT

¬GATHERING_
FACE_HUE_DATA

FRAMING_

PICTURE

FRAME_OUT_

OF_BOUNDS

“The picture is o஀ to one side… ⒋’ll try to center
it!”
“⒋’m trying to get a better photo composition.
⒊old on a second…”
“⒎et me take a look rom a di஀erent angle…
⒊old on.”
“⒎et me try to center the picture a bit…”

¬PROCESSING_
BUMPER_EVENT

¬GATHERING_
FACE_HUE_DATA

FRAMING_

PICTURE

NO_FRAME “⒋ cannot see anything interesting. ⒋’ll try rom
over there…”
“⒋’m just looking for someone to photograph…”

Table A.1: An excerpt rom ⒎uke’s state externalization phrase book (X is a “do not care” symbol).

10⑺
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A.2 Additional Examples of Discriminative Human/Face Detectors

This section describes a few additional examples of discriminative human/face detectors, based on the classi஁ers
and human/face feature descriptors discussed in sections ⑵ܩܩܫ and .1ܪܩܫ

Image intensities with quadratic kernel SVMs A face detection approach that directly uses image intensities as
input features has been proposed by ⒑suna et al. (1⑻⑻⑹). ⒋n their approach, 19× 19 pixel size grayscale images are
classi஁ed using a ⒕V⒏with a quadratic kernel (with the applied elliptical mask to ignore window boundaries).

This ⒕V⒏ is trained in a supervised fashion, using datasets of preprocessed face images (with image intensities
normalized using brightness correction and histogram equalization) and non-face images, bootstrapped rom images
of landscapes, trees, buildings and so on. Ater the training, the obtained ⑴,⑷00 support vectors are used for sliding-
window classi஁cation, over multiple scales of the input image.

PCA features with quadratic/Gaussian kernel SVMs ⒏under and ⒉avrila (⑴00⑸) use the ⒒CA features for train-
ing binary human/non-human classi஁ers in the following way.

⒈irst they extract principal components rom a training set containing ⑶,⑺00 human images of 18 × 36-pixel
size. (The principal components with the associated largest eigenvalues are shown in ஁gure A.1.) Then they use a
supervised “human”/“non-human” training image set to train a set of quadratic/⒉aussian kernel ⒕V⒏ discriminative
classi஁ers using the image representations in the reduced-dimensionality space as the feature vectors.

⒈igure A.1: Examples of principal components with the largest associated eigenvalues, obtained rom a ⑶,⑺00 human image
training set (sorted in the order of decreasing eigenvalues). Adapted rom ⒏under and ⒉avrila (⑴00⑸).

Haar-like features with AdaBoost Viola et al. (⑴00⑵) describe a human detector which uses the AdaBoost ap-
proach to select and construct “strong” classi஁ers rom the ⒊aar-like features, which perform the best on the
“human”/“non-human” training set

⒕imilarly to the approach described by Viola and ⒌ones (⑴001), a cascade of these strong classi஁ers is assembled.
⒊owever, in this approach the ⒊aar-like features are evaluated not on the input images directly, but on the spatially
shited rame di஀erence images (assuming a static camera position), to capture some of the temporal properties of
human appearance.

LBP/HOG features with SVMs An example of the combined ⒎B⒒ and ⒊⒑⒉ feature use in human/face detection
is presented by Wang et al. (⑴00⑻). ⒋n their sliding-window approach, the presence/absence of humans in individual
windows is veri஁ed using a combination of three linear ⒕V⒏s (full body, upper body and lower body), which are
trained based on ⒎B⒒ and ⒊⒑⒉ features.
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⒋n Wang et al.’s system, the occlusion likelihood is also modelled by the responses of the full-body detection ⒕V⒏
to individual blocks within the detector’s window: if these blocks are within ⒕V⒏’s margin then the individual
upper-/lower-body ⒕V⒏ classi஁ers are invoked to veriy the presence of humans in the window.

Another example of a sliding-window human detector using ⒊⒑⒉ features is provided by ⒏aji et al. (⑴00⑺). ⒋n
this approach, ⒏aji et al. describe an eஃcient way to train a ⒕V⒏ with an intersection kernel (K(x,y) =∑

imin(ha(i), hb(i), where ha and hb are input histograms), using 1,⑵⑸0 ⒊⒑⒉ features.

HOD features with linear SVM Choi et al. (⑴01⑵) proposes an improvement to ⒕pinello and Arras’s (⑴011) ⒊⒑D-
based human detection approach (fully described in section ,(1ܪܩܫ in which a graph-segmentation algorithm is
used to ஁rst segment the images into candidate regions based on the depth values and surface normals. Ater
rejecting image segments which are unlikely to contain humans (based on geometric heuristics), the remaining
regions are classi஁ed as human/non-human using a linear ⒕V⒏ with ⒊⒑D descriptors.

The initial segmentation and region rejection steps allow Choi et al. to signi஁cantly improve the human detection
speed while achieving similar accuracy in comparison to ⒕pinello and Arras.

A.3 Obstacle Detection and Avoidance Source Code

This section provides a source code example of a ⒔⒑⒕ obstacle avoidance node (rp_obstacle_avoidance) as described
in section .1ܫܪܬ ⒋n particular, this node’s header, implementation and launch ஁les are provided in listings A.1,
A.⑴ and A.⑵ below.

⒎isting A.1: ⒑bstacle avoidance node’s (rp_obstacle_avoidance) header (/include/obstacle_avoidance.hpp).
/**

* @author Manfredas Zabarauskas <manfredas@zabarauskas.com >

* @date 27/08/2013 19:49:22

*

* @class RPObstacleAvoidanceNode

*

* @brief Robot photographer 's obstacle avoidance ROS node , which uses point cloud and depth image

* inputs to detect obstacles in front of the robot , and generates the driving directions

* accordingly.

*/

#ifndef OBSTACLE_AVOIDANCE_HPP_

#define OBSTACLE_AVOIDANCE_HPP_

// STL includes

#include <deque >

// ROS includes

#include <ros/ros.h>

#include <sensor_msgs/PointCloud2.h>

#include <std_msgs/Float64.h>

#include <std_msgs/UInt8.h>

// PCL includes

#include <pcl/ros/conversions.h>

#include <pcl_ros/point_cloud.h>

#include <pcl/point_types.h>

// Boost includes

#include <boost/thread/mutex.hpp >
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// RPLocomotion includes

#include <driving_direction.h>

// Constants

#define DRIVING_DIRECTION_TOPIC "/rp/obstacle_avoidance/driving_direction"

#define SENSOR_TILT_ANGLE_TOPIC "/cur_tilt_angle"

#define SENSOR_POINT_CLOUD_TOPIC "/camera/depth_registered/points"

#define SENSOR_DEPTH_IMAGE_TOPIC "/camera/depth_registered/image"

#define SENSOR_DISTANCE_FROM_GROUND 0.61f

// Overridable parameter defaults

#define FOCUS_FIELD_WIDTH_DEFAULT 0.4

#define FOCUS_FIELD_HEIGHT_DEFAULT 1.4

#define FOCUS_FIELD_DEPTH_DEFAULT 0.5

#define CLOUD_FILTER_SIZE_DEFAULT 0.03

#define MAX_INVALID_DEPTH_DATA_DEFAULT 0.4

#define SMOOTHING_FRAME_LIMIT_DEFAULT 2

#define VERBOSE_OUTPUT_ENABLED_DEFAULT false

class RPObstacleAvoidanceNode

{

private:

ros:: NodeHandle& node; /**< Node handle. */

DrivingDirection current_direction; /**< Robot 's current driving direction. */

std::deque <unsigned > point_counts_ahead; /**< History of points ahead of robot. */

float sensor_angle; /**< Sensor 's angle. */

boost::mutex sensor_angle_mutex; /**< Sensor 's angle lock. */

ros:: Publisher driving_direction_publisher; /**< Driving direction publisher. */

double FOCUS_FIELD_WIDTH; /**< ROI width overridable parameter (OP). */

double FOCUS_FIELD_HEIGHT; /**< ROI height OP. */

double FOCUS_FIELD_DEPTH; /**< ROI depth OP. */

double CLOUD_FILTER_SIZE; /**< Voxel filter grid size OP. */

double MAX_INVALID_DEPTH_DATA; /**< Maximum allowed percentage OP. */

int SMOOTHING_FRAME_LIMIT; /**< Smoothing frame limit OP. */

bool VERBOSE_OUTPUT_ENABLED; /**< Verbose output OP. */

/**

* Reduces the number of points in the cloud using voxel grid filter.

* @param cloud_to_filter Point cloud to be filtered.

* @param filtered_cloud Resulting filtered point cloud.

* @param voxel_size Voxel grid filter size.

*/

void reducePointCloudDensity(const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& cloud_to_filter

pcl::PointCloud <pcl::PointXYZ >::Ptr& filtered_cloud ,

double voxel_size);

/**

* Levels the point cloud w.r.t. the ground (using Kinect 's accelerometer).

* @param cloud_to_level Point cloud to be levelled.

* @param leveled_cloud Resulting levelled point cloud.

*/

void levelPointCloud(const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& cloud_to_level ,

pcl::PointCloud <pcl::PointXYZ >::Ptr& levelled_cloud);

/**

* Reduces the point cloud to an area of interest (ROI) in which robot looks for obstacles.

* @param cloud_to_crop Point cloud to be cropped.

* @param cropped_cloud Resulting cropped point cloud.

* @param x_limit_left X axis left crop limit.
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* @param x_limit_right X axis right crop limit.

* @param y_limit_above Y axis top crop limit.

* @param y_limit_below Y axis bottom crop limit.

* @param z_limit_ahead Z axis front crop limit.

* @param z_limit_behind Z axis back crop limit.

*/

void cropPointCloud(const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& cloud_to_crop ,

pcl::PointCloud <pcl::PointXYZ >::Ptr& cropped_cloud ,

double x_limit_left ,

double x_limit_right ,

double y_limit_above ,

double y_limit_below ,

double z_limit_ahead ,

double z_limit_behind);

/**

* Gets the proportion of invalid data (missing depth readings) in a given depth image.

* @param depth_image Input depth image.

* @returns Proportion of invalid data in the given depth image (between 0.0 and 1.0).

*/

double getInvalidDepthDataProportion(const sensor_msgs ::Image:: ConstPtr& depth_image);

/**

* Computes the driving direction from the levelled point cloud in front of the robot.

* @param frontal_point_cloud Levelled point cloud in front of the robot.

* @returns Computed driving direction.

*/

DrivingDirection drivingDirectionFromFrontalPointCloud(

const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& frontal_point_cloud);

/**

* Publishes the given driving direction.

* @param driving_direction Driving direction to publish.

*/

void publishDrivingDirection(const DrivingDirection driving_direction);

/**

* Gets the overridable parameters from the parameter server.

*/

void getOverridableParameters ();

/**

* Callback for the point cloud and depth image inputs from the Kinect.

* @param point_cloud Input point cloud from Kinect.

* @param depth_image Input depth image from Kinect.

*/

void kinectInputCallback(const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& point_cloud ,

const sensor_msgs ::Image:: ConstPtr& depth_image);

/**

* Callback for the accelerometer 's inputs from the Kinect.

* @param angle Kinect 's tilt angle.

*/

void sensorAngleCallback(const std_msgs :: Float64& angle);

public:

/**

* Default obstacle avoidance node's constructor.

* @param node Handle to ROS node.

*/

RPObstacleAvoidanceNode(ros:: NodeHandle& node);

};

#endif /* OBSTACLE_AVOIDANCE_HPP_ */
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⒎isting A.⑴: ⒑bstacle avoidance node’s (rp_obstacle_avoidance) implementation (/src/obstacle_avoidance.cpp).
/**

* @author Manfredas Zabarauskas <manfredas@zabarauskas.com >

* @date 27/08/2013 19:49:22

*/

#include <obstacle_avoidance.hpp >

// STL includes

#include <iostream >

#include <cmath >

// ROS includes

#include <message_filters/subscriber.h>

#include <message_filters/synchronizer.h>

#include <message_filters/sync_policies/approximate_time.h>

#include <sensor_msgs/Image.h>

// PCL includes

#include <pcl/ros/conversions.h>

#include <pcl/filters/voxel_grid.h>

#include <pcl/filters/passthrough.h>

#include <pcl/common/transforms.h>

// Macro to check whether a given raw depth value is invalid (Kinect/GFreenect specific)

#define INVALID_DEPTH_VALUE(ITERATOR) ((*(( ITERATOR) + 0) == 0) && \

(*(( ITERATOR) + 1) == 0) && \

(*(( ITERATOR) + 2) == 192) && \

(*(( ITERATOR) + 3) == 127))

int main(int argc , char** argv)

{

// Initialize ROS

ros::init(argc , argv , "rp_obstacle_avoidance");

// Get the handle to the ROS node

ros:: NodeHandle node;

// Start the worker node

RPObstacleAvoidanceNode worker_node(node);

}

RPObstacleAvoidanceNode :: RPObstacleAvoidanceNode(ros:: NodeHandle& node) :

node(node),

sensor_angle (0.0f),

current_direction(STOP),

// Initialize overridable parameters

FOCUS_FIELD_WIDTH(FOCUS_FIELD_WIDTH_DEFAULT),

FOCUS_FIELD_HEIGHT(FOCUS_FIELD_HEIGHT_DEFAULT),

FOCUS_FIELD_DEPTH(FOCUS_FIELD_DEPTH_DEFAULT),

CLOUD_FILTER_SIZE(CLOUD_FILTER_SIZE_DEFAULT),

MAX_INVALID_DEPTH_DATA(MAX_INVALID_DEPTH_DATA_DEFAULT),

SMOOTHING_FRAME_LIMIT(SMOOTHING_FRAME_LIMIT_DEFAULT),

VERBOSE_OUTPUT_ENABLED(VERBOSE_OUTPUT_ENABLED_DEFAULT)

{

// Get parameters from the parameter server

getOverridableParameters ();

// Initialize ROS publisher for the driving direction

const int DRIVING_DIRECTION_BUFFER_SIZE = 1;

driving_direction_publisher = node.advertise <std_msgs ::UInt8 >(

DRIVING_DIRECTION_TOPIC ,

DRIVING_DIRECTION_BUFFER_SIZE

);
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// Initialize ROS subscriber for the Kinect sensor angle

const int SENSOR_TILT_ANGLE_BUFFER_SIZE = 1;

node.subscribe(SENSOR_TILT_ANGLE_TOPIC ,

SENSOR_TILT_ANGLE_BUFFER_SIZE ,

&RPObstacleAvoidanceNode :: sensorAngleCallback ,

this);

// Initialize synchronized ROS subscribers for the Kinect 's point cloud input and depth images

const int SYNCHRONIZED_SUBSCRIBERS_BUFFER_SIZE = 5;

message_filters ::Subscriber <pcl::PointCloud <pcl::PointXYZ > > point_cloud_subscriber(

node ,

SENSOR_POINT_CLOUD_TOPIC ,

SYNCHRONIZED_SUBSCRIBERS_BUFFER_SIZE

);

message_filters ::Subscriber <sensor_msgs ::Image > depth_data_subscriber(

node ,

SENSOR_DEPTH_IMAGE_TOPIC ,

SYNCHRONIZED_SUBSCRIBERS_BUFFER_SIZE

);

// Create a synchronized subscriber for Kinect 's point cloud and depth image inputs

typedef message_filters :: sync_policies :: ApproximateTime <

pcl::PointCloud <pcl::PointXYZ >, sensor_msgs ::Image

> SynchronizationPolicy;

const int SYNCHRONIZATION_WINDOW_SIZE = 10;

message_filters :: Synchronizer <SynchronizationPolicy > synchronized_subscriber(

SynchronizationPolicy(SYNCHRONIZATION_WINDOW_SIZE),

point_cloud_subscriber ,

depth_data_subscriber

);

// Register the callback for the synchronized subscriber

synchronized_subscriber.registerCallback(

boost::bind(& RPObstacleAvoidanceNode :: kinectInputCallback , this , _1, _2)

);

// Spin the node at 5 Hz

ros::Rate rate (5);

while (ros::ok())

{

ros:: spinOnce ();

rate.sleep();

}

};

void RPObstacleAvoidanceNode :: kinectInputCallback(

const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& point_cloud ,

const sensor_msgs ::Image:: ConstPtr& depth_image)

{

// Check the proportion of valid depth readings; if the depth image is nearly empty , we must

// be standing in front of a large object.

DrivingDirection proposed_direction;

if (getInvalidDepthDataProportion(depth_image) > MAX_INVALID_DEPTH_DATA)

{

proposed_direction = (current_direction != FORWARD) ? current_direction : RIGHT;

}

else

{

// Create an empty point cloud

pcl::PointCloud <pcl::PointXYZ >::Ptr cloud_filtered(new pcl::PointCloud <pcl::PointXYZ >);

// Reduce the point cloud density

reducePointCloudDensity(point_cloud , cloud_filtered , CLOUD_FILTER_SIZE);
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// Level it to be parallel to the ground

levelPointCloud(cloud_filtered , cloud_filtered);

// Crop it to the area in front of the robot

cropPointCloud(cloud_filtered ,

cloud_filtered ,

-FOCUS_FIELD_WIDTH / 2,

FOCUS_FIELD_WIDTH / 2,

-FOCUS_FIELD_HEIGHT ,

0.0,

FOCUS_FIELD_DEPTH ,

0.0);

// Get the driving direction from the contents of the point cloud ahead of the robot

proposed_direction = drivingDirectionFromFrontalPointCloud(cloud_filtered);

}

// Take care to ensure that the current turn direction is maintained (to avoid oscillation)

if (current_direction == FORWARD || proposed_direction == FORWARD)

{

if (proposed_direction != current_direction)

{

publishDrivingDirection(proposed_direction);

current_direction = proposed_direction;

}

}

// Produce output if necessary

if (VERBOSE_OUTPUT_ENABLED)

{

ROS_INFO("Current direction: %s", (( current_direction == FORWARD) ? "FORWARD" :

(current_direction == LEFT) ? "LEFT" : "RIGHT"));

}

};

void RPObstacleAvoidanceNode :: levelPointCloud(

const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& cloud_to_level ,

pcl::PointCloud <pcl::PointXYZ >::Ptr& levelled_cloud)

{

// Get the last known sensor 's tilt angle

float angle_rad;

sensor_angle_mutex.lock();

{

angle_rad = M_PI * sensor_angle / 180.0f;

}

sensor_angle_mutex.unlock ();

// Create the appropriate rotation matrix

Eigen:: Matrix4f rotation_matrix;

rotation_matrix <<

1.0f, 0.0f, 0.0f, 0.0f,

0.0f, cos(angle_rad), -sin(angle_rad), -SENSOR_DISTANCE_FROM_GROUND ,

0.0f, sin(angle_rad), cos(angle_rad), 0.0f,

0.0f, 0.0f, 0.0f, 1.0f;

// Rotate back the point cloud according to input from Kinect 's accelerometer

pcl:: transformPointCloud (* cloud_to_level , *levelled_cloud , rotation_matrix);

}

DrivingDirection RPObstacleAvoidanceNode :: drivingDirectionFromFrontalPointCloud(

const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& frontal_point_cloud)

{

// Do not use smoothing while turning
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if (current_direction != FORWARD)

{

point_counts_ahead.clear();

}

// Add the sample of the number of points ahead , capping the sample count

point_counts_ahead.push_front(frontal_point_cloud ->size());

while (point_counts_ahead.size() > SMOOTHING_FRAME_LIMIT)

{

point_counts_ahead.pop_back ();

}

// Get the smoothed number of points ahead

int smoothed_point_count_ahead = 0;

for (unsigned i = 0; i < point_counts_ahead.size(); i++)

{

smoothed_point_count_ahead += point_counts_ahead[i];

}

smoothed_point_count_ahead /= point_counts_ahead.size();

if (smoothed_point_count_ahead == 0)

{

// Coast is clear

return FORWARD;

}

else

{

// Find out on which side of the robot (left/right) lies the centroid of an obstacle and

// turn in the opposite direction ,

float centroid_x = 0.0f;

for (unsigned i = 0; i < frontal_point_cloud ->size(); i++)

{

centroid_x += frontal_point_cloud ->points[i].x;

}

centroid_x /= frontal_point_cloud ->size();

return (centroid_x < 0.0) ? RIGHT : LEFT;

}

}

void RPObstacleAvoidanceNode :: reducePointCloudDensity(

const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& cloud_to_filter ,

pcl::PointCloud <pcl::PointXYZ >::Ptr& filtered_cloud ,

double voxel_size)

{

// Create the appropriate voxel grid filter

pcl::VoxelGrid <pcl::PointXYZ > voxel_size_filter;

voxel_size_filter.setInputCloud(cloud_to_filter);

voxel_size_filter.setLeafSize(voxel_size , voxel_size , voxel_size);

// Subsample the input point cloud

voxel_size_filter.filter (* filtered_cloud);

};

void RPObstacleAvoidanceNode :: cropPointCloud(

const pcl::PointCloud <pcl::PointXYZ >:: ConstPtr& cloud_to_crop ,

pcl::PointCloud <pcl::PointXYZ >::Ptr& cropped_cloud ,

double x_limit_left ,

double x_limit_right ,

double y_limit_above ,

double y_limit_below ,

double z_limit_ahead ,

double z_limit_behind)

{
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// Create the appropriate pass -through filter

pcl:: PassThrough <pcl::PointXYZ > pass_through_filter;

pass_through_filter.setInputCloud(cloud_to_crop);

// Crop horizontally

pass_through_filter.setFilterFieldName("x");

pass_through_filter.setFilterLimits(x_limit_left , x_limit_right);

pass_through_filter.filter (* cropped_cloud);

// Crop vertically

pass_through_filter.setFilterFieldName("y");

pass_through_filter.setFilterLimits(y_limit_above , y_limit_below);

pass_through_filter.filter (* cropped_cloud);

// Crop depth -wise

pass_through_filter.setFilterFieldName("z");

pass_through_filter.setFilterLimits(z_limit_behind , z_limit_ahead);

pass_through_filter.filter (* cropped_cloud);

};

double RPObstacleAvoidanceNode :: getInvalidDepthDataProportion(

const sensor_msgs ::Image:: ConstPtr& depth_image)

{

int invalid_depth_pixels = 0;

// Count the invalid depth pixels directly in raw depth data (in 32FC1 encoding)

for (std::vector <unsigned char >:: const_iterator iterator = depth_image ->data.begin(),

iterator_end = depth_image ->data.end();

iterator != iterator_end;

std:: advance(iterator , 4))

{

invalid_depth_pixels += INVALID_DEPTH_VALUE(iterator);

}

return 4.0 * (double)invalid_depth_pixels / (double)depth_image ->data.size();

}

void RPObstacleAvoidanceNode :: publishDrivingDirection(const DrivingDirection driving_direction)

{

// Convert and publish the direction

std_msgs ::UInt8 converted_direction;

converted_direction.data = drivingDirectionToUint8(driving_direction);

driving_direction_publisher.publish(converted_direction);

}

void RPObstacleAvoidanceNode :: sensorAngleCallback(const std_msgs :: Float64& angle)

{

// Save sensor 's angle

sensor_angle_mutex.lock();

{

sensor_angle = angle.data;

}

sensor_angle_mutex.unlock ();

}

void RPObstacleAvoidanceNode :: getOverridableParameters ()

{

// Get overridable parameters from the parameter server

node.getParamCached("/rp/obstacle_avoidance_node/focus_field_width", FOCUS_FIELD_WIDTH);

node.getParamCached("/rp/obstacle_avoidance_node/focus_field_height", FOCUS_FIELD_HEIGHT);

node.getParamCached("/rp/obstacle_avoidance_node/focus_field_depth", FOCUS_FIELD_DEPTH);
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node.getParamCached("/rp/obstacle_avoidance_node/cloud_filter_size", CLOUD_FILTER_SIZE);

node.getParamCached("/rp/obstacle_avoidance_node/smoothing_frame_limit", SMOOTHING_FRAME_LMT);

node.getParamCached("/rp/obstacle_avoidance_node/max_invalid_depth_data",MAX_NVLD_DEPTH_DATA);

node.getParamCached("/rp/obstacle_avoidance_node/verbose_output_enabled",VERBOSE_OUT_ENABLED);

}

⒎isting A.⑵: ⒑bstacle avoidance node’s (rp_obstacle_avoidance) launch ஁le (/launch/obstacle_avoidance.launch).
<launch >

<node name="kinect_aux_node" pkg="kinect_aux" type="kinect_aux_node"/>

<node ns="rp" name="obstacle_avoidance_node" pkg="rp_obstacle_avoidance"

type="rp_obstacle_avoidance_node">

<!-- Node enabled flag -->

<param name="enabled" value="true" type="bool"/>

<!-- Verbose output enabled flag -->

<param name="verbose_output_enabled" value="false" type="bool"/>

<!-- ROI width (meters) -->

<param name="focus_field_width" value="0.45" type="double"/>

<!-- ROI height (meters) -->

<param name="focus_field_height" value="1.4" type="double"/>

<!-- ROI depth (meters) -->

<param name="focus_field_depth" value="0.7" type="double"/>

<!-- Voxel filter grid size (meters) -->

<param name="cloud_filter_size" value="0.05" type="double"/>

<!-- Smoothing frame limit (increases resistance to noise , but decreases responsiveness) -->

<param name="smoothing_frame_limit" value="3" type="int"/>

<!-- Maximum allowed percentage of invalid depth data in the depth image -->

<param name="max_invalid_depth_data" value="0.4" type="double"/>

</node>

</launch >
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