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Abstract

Autonomous robot photographers serve as excellent low-cost robotics research platforms, encompassing difficult
multidisciplinary challenges. For their successful operation, they need to i) detect and track people in their envi-
ronment, ii) autonomously wander around avoiding active and passive obstacles, iii) compose aesthetically pleasing
pictures, iv) intelligently interact with humans, and so on.

All of the robot photographer systems described in scientific literature between 2003-2013 (since the earliest robot
photographer, to the present day) rely on RGB cameras for their vision, and laser range/infrared/ultrasound sensors
for obstacle detection and avoidance. The work presented in this thesis describes how the combined colour/depth
data provided by affordable and ubiquitous RGB-D sensors can be used to improve the current state-of-the-art in
autonomous robot photography.

To that end, this thesis thoroughly surveys previous solutions to the main challenges of robot photographers (viz.
human subject detection/tracking and obstacle detection/avoidance) and proposes a number of novel methods or
existing method extensions to solve these problems. It also describes solutions to other robot photographer’s tasks,
like photograph composition, RGB-D and photographic camera alignment, or robot’s state externalization.

After the theoretical description of the methods, their implementations within an open-source Robot Operating
System framework are described. To evaluate this software in real-world situations, a physical robot containing a
point-and-shoot photographic camera, a low-cost RGB-D Microsoft Kinect sensor and an open-source hardware
platform is built and deployed in an unstructured real-world eventl. More than half of the pictures taken by the
robot in this event are evaluated by independent judges as “good (4)” or “very good (5)” (on a five-point Likert scale),
markedly exceeding the best available previous results reported by Byers et al| (2003) and Ahn et al. (2006).

'A video of the robot “in-action” can be seen at http://zabarauskas. com/robot-photographer.


http://zabarauskas.com/robot-photographer
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Chapter 1

Robot Photographers in the Context of Autonomous Robots

This chapter presents a brief history of robots and provides examples of modern autonomous robots in a variety of application
areas. Within this context, it describes the motivation for autonomous robot photographer research and explains the
applicability of low-cost RGB-D sensors in this task. At the end of the chapter, the project’s aims and success criteria are
presented, and the structure for the rest of the dissertation is explained.

1.1 Brief history of autonomous robots

The idea of artificial creatures exhibiting human-like behaviour has been around for centuries:

* Homer’s liad (760-710 BC) describes mechanical tripod handmaids made from gold by Hephaestus, the
Greek god of fire and crafts (Monro, 1903),

* an ancient Chinese text Liezi (¥1]-, 400-300 BC) tells a story of the craftsman Yanshi, who created a life-
sized humanoid (indistinguishable from a human in looks and behaviour) to impress the King Mu of Zhou
(Needham, [1991)),

* Apollonius’ Argonautica (~300 BC) mentions Talos, a giant man-like creature made out of bronze (with lead
in its veins), potentially created by Daedalus, the skilful craftsman in Greek mythology (Peris, 1971).

However, the first real-world materializations of autonomous robots appeared only in late 20™ century. One of the
earliest autonomous robots described in the scientific literature was Shakey, built around 1970 in SRI (Nilsson,
1984). Shakey could perform basic tasks given by an operator within a highly-controlled coloured block world.
Nine years later, another robot from SRI called the “Stanford Cart” (Moraveg, 1980) managed to autonomously
cross a chair-filled room (albeit in five hours). Both of these robots used TV cameras for their vision.

During the three subsequent decades robotics research has spurred, producing walking, swimming, driving and
flying; anthropomorphi(fh and non-biomimetic autonomous robots. These robots used various types of vision/dis-
tance sensors, and have been applied in a number of areas, ranging from space exploration to entertainment. Some
examples of the modern autonomous robots and the sensors which they used for image and depth inputs are

presented in tables , and figures ll:l], .

1.2 Motivation for “robot photographer” research

Within the field of autonomous robotics (and the variety of its application areas), robot photographers serve as
excellent low-cost research platforms. They encompass a number of challenges common in robotics research, like
task and path planning, locomotion and navigation (including obstacle avoidance), and human subject detection/

tracking.

Robot photographers also include multidisciplinary challenges, like the automatic photograph composition (which
requires computational understanding of the aesthetics of photography) and Human-Robot Interaction (HRI). As

"Human/animal-like.
Machine-like.



1.2. MOTIVATION FOR “ROBOT PHOTOGRAPHER” RESEARCH

Area Application Example autonomous robot Depth sensors Image sensors
Military ~ Urban search Hector, an unmanned ground vehi- Laser range RGB camera
and rescue  cle for autonomous victim search and  scanner, RGB-D
(USAR) environment mapping (Graber et al|, sensor
2013)
Humanitarian ~ Gryphon, an autonomous landmine Stereo RGB Stereo RGB camera
demining detection robot (Fukushima et al,, camera pair pair
2008)
Reconnai- Autonomous unmanned ground and  Laser range RGB cameras
ssance aerial vehicles for military threat de-  scanners,
tection (Janko et all, 2011) ultrasonic
sensors
Surveillance Security robot for autonomous ship  Laser range RGB camera
cabin monitoring (Chung, 2013) scanners,
ultrasonic
sensors
Space Planetary Curiosity, a car-sized Mars rover Six Monochrome
explo- surface explo-  (Grotzinger et al!, 2012) monochrome telescopic camera, two
ration ration stereo camera RGB mast cameras,
pairs robotic arm RGB
camera, descent RGB
camera
Astronaut as- Robonaut 2, an anthropomorphic Stereo camera Two RGB cameras
sistance robot helper, deployed in Interna- pair, infrared
tional Space Station (Diftler et ali, depth sensor
2011)
Landing on WGTA, an autonomous lander flight Inertial High-resolution RGB
airless plane-  test vehicle (Chavers et all, 2012) measurement camera
tary bodies unit, altimeters
Industry ~ Manufacturing Baxter, an adaptive manufacturing Ultrasonic Three RGB cameras
robot, trainable by non-technical sensors

Welding
Harvesting

Logistics

personnel (Fitzgerald, 2013)

Little Helper, an autonomous man-
ufacturing assistant robot (Hvilshoj
et all, 2009)

Self-correcting gas tungsten arc
welding robot (Shen et al., 2010)
Apple harvesting robot (De-An
et al), 2011)

Unmanned forklift for palletized
cargo handling (Teller et al), 2010)

Laser range
scanner,
ultrasonic
Sensors

Infrared sensors

Laser range
sensors

Monochrome camera

RGB camera

RGB camera

RGB cameras

Table 1.1: Examples of state-of-the-art robots with varying degrees of autonomy in different application areas, together with
their depth/image sensors.
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Area Application Example autonomous robot Depth sensors Image sensors
Assistive Assistance for Care-O-bot 3, a mobile robot but-  Stereo RGB camera Stereo RGB
robotics elderly ler (Graf et al), 2009) pair, Time-of-flight camera pair
camera, laser range
scanner
Assistance for eyeDog, an assistive guide robot Laser range sensor RGB camera
blind (Galatas et alJ, 2011)
Assistance for Caregiver-following robotic RGB-D sensor RGB-D sensor
physically dis- wheelchair (Wu et all, 2013)
abled
Autism  re- Bandit, a humanoid bubble- Laser range scanner RGB cameras
search blowing robot (Feil-Seifer and
Matarid, 2008)
Domestic ser- Roomba, a robotic vacuum cleaner  Infrared sensors, -
vices (Forlizzi and Disalvo, 2006) cliff/wheel-
drop/bumper
sensors
Childcare PaPeRo, a childcare robot (Osada Stereo RGB camera Stereo RGB
et all, 2006) pair, ultrasonic sensors  camera pair
Entertain-  Tour guiding ~ Neptuno, an autonomous tour Laser range sensor, -
ment guide robot (Bueno et all, 2011) ultra-wide band

Robotic foot-
ball

Robotic recep-
tionists
Robotic pets

Robot photog-

raphers

Robotinho, a humanoid tour guide
robot (Faber et all, 2009)

A robot goalkeeper (Dias et all,
2013)

Turtle, a football playing robot
(Hoogendijk et al., 2012)

Hala, a bilingual robot receptionist
(Simmons et al), 2011)

Olivia, a child robot receptionist
(Niculescu et all, 2010)

Pleo, a robot pet dinosaur (Gomes
et all, 2011)

Human-interaction based robot
photographer (Ahn et al., 2006)
Lewis, an autonomous event pho-
tographer (Byers et al., 2003)

(UWB) sensors
Laser range sensor,
ultrasonic distance
Sensors

RGB-D camera
Laser range scanner
Laser range scanner

Stereo RGB camera

pair, laser range scanner

Four gI'OUl’ld SENSOors

Ultrasonic and infrared

SENSOors
Laser range sensor

Two RGB
cameras

Two RGB
cameras
Two RGB

cameras

RGB camera

RGB camera

Two RGB
cameras
Two RGB
cameras

Table 1.2: Continued examples of state-of-the-art robots with varying degrees of autonomy in different application areas,
together with their depth/image sensors.
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Hector, an unmanned ground vehicle for autonomous Robonaut 2, an anthropomorphic robot helper,
victim search and environment mapping. Taken from  deployed in International Space Station. Taken from

praber et all (|2013|) IDiftler et all (|2011|)

Baxter, an adaptive manufacturing robot, trainable by An autonomous apple harvesting robot. Taken from

non-technical personnel. Taken from

() De-An et al! (2011).

|

Unmanned forklift for palletized cargo handling. Care-O-bot 3, a mobile robot butler. Taken from

Taken from ITeller et all (IZOlq) ()

Figure 1.1: Examples of state-of-the-art robots with varying degrees of autonomy.
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Bandit, a humanoid bubble-blowin

o robot. Taken

from [Feil—Seifer and Matarid

(2008).

Hala, a bilingual robot rece

tionist. Taken from

Eimmons etal

(2011).

PaPeRo, a childcare robot. Taken from

(009,

Pleo, a robot pet dinosaur. Taken from
T

Robotinho, a humanoid tour guide robot. Taken from

lFaber et all (200‘1).

Turtle, a football playing robot. Taken from

lHoogendijk et all (IZOIZI)

Figure 1.2: Continued examples of state-of-the-art robots with varying degrees of autonomy.
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pointed out by Byers et al. (2003), robotic photographer platforms are particularly well suited for HRI research,
since the general public can easily grasp the overall concept (“it’s a robot whose job is to take pictures”), and thus
tend to interact with the robot naturally.

Autonomous robot photographers are also interesting as undergraduate teaching tools. In particular, they could be
used as hands-on research platforms in machine learning/artificial intelligence and similar courses. They could also
be used for engaging prospective Computer Science undergraduates during the “open day”-like events.

Finally, robot photographers show potential in commercial applications (viz. event photography, robotic journalism
or workplace monitoring), since the service costs of an autonomous robot photographer are significantly smaller
than those of a professional photographer.

1.3 Low-cost RGB-D sensor applicability in autonomous robotic photography

As indicated in tables [I.1] and , autonomous robots often need depth and colour data to successfully interact with
their environment. While various types of cameras can easily provide the colour data, a number of different sensors
have been investigated for acquiring the distances to objects in the robot’s surroundings. These sensors include
laser range scanners, monocular/stereo camera rigs and infrared/ultrasonic sensors. Compared to the active-light
RGB-D sensors, they all have their own disadvantages (as summarized in table )

The low-cost RGB-D sensors like Microsoft Kinect or Asus Xtion Pro contain RGB and infrared (IR) cameras, and
an IR projector which emits a structured IR pattern. The structured-light triangulation based on the input from
the IR camera is then used to infer object depths in the scene. This approach yields dense three-dimensional point
clouds at around 30 frames per second, while consuming smaller amount of power then LIDARs and providing
more accurate data than ultrasound sensors or stereo camera pairs (e.g. the latter need to solve the correspondence

problem, which is problematic in homogeneous color areas).

These features of RGB-D sensors and their successful adoption in a number of other recent autonomous mobile
robots (e.g. see the robots by Stiickler and Steffens (2011), Graber et al| (2013), Wu et al. (2013)) suggest that they
could be used to advance the current state-of-the-art in autonomous robot photography.

To that end, this dissertation focuses on investigating RGB-D data based solutions for human detection/tracking,
obstacle avoidance and other challenges of autonomous robot photographers. The final choice of the algorithms
is strongly influenced by their computationally simplicity, since it directly translates to energy efficiency (longer
battery life) and their potential to be executed on more modest configuration laptops/netbooks, making the au-

tonomous robotic photography research more accessible both within and outside of the academia.

1.4 Project aims and success criteria

With the above motivation in mind, the main aims of the project are as follows:

1. Investigate alternative solutions (based on RGB-D data) to the main problems in robot photography, focusing
on:

(a) human subject detection/tracking and obstacle avoidance tasks,

(b) processing power, and the associated energy usage constraints imposed by mobile robotics.
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2. Evaluate the real-world effectiveness of these solutions by implementing them in an autonomous “event
photographer” robot. This includes:

(a) creating a structural design, obtaining the hardware components and assembling the physical robot,
(b) creating a modular software design and implementing the proposed algorithms,

(c) deploying the robot photographer in an unstructured environment (e.g. an open-day event) and com-
ploying photograp g P y
paring the empirical results with those obtained by Byers et al| (2003) and Ahn et al. (2006).

3. Contribute to increasing the accessibility of autonomous robot photography research both within and outside
academia by:

(a) using widely available, low-cost off-the-shelf hardware components for the robot’s structural design,

(b) designing modular, high-cohesion and low-coupling robot control software (to promote investigation

into robot’s performance changes after replacing a particular software component),

(c) open-sourcing the hardware and software design, and the source code of the implemented autonomous

robot photographer.
The project will be considered to be successful if the following goals are achieved:

1. The hardware and software implementations of the robot are completed within the four-month timeframe
of the project,

2. The robot is capable to autonomously navigate and take well-composed photographs of human subjects when
deployed to an unstructured environment,

3. The quality of the photographs (when evaluated on a five-point Likert scale) approaches the results reported
by Byers et al. (2003) and Ahn et al| (2006).

1.5 Dissertation structure

This thesis is structured in a chronological order, following different stages of an autonomous robot photographer’s
development (viz. analysis, implementation, deployment, evaluation and post-mortem learning):

* “Chapter 2: Advances and Limitations of Robotic Photography Research” introduces the research done in au-
tonomous robot photography between 2003-2013 (from the first autonomous photographer robot described
by Byers et al. (2003), to the present day). At the end of the chapter, the limitations of the earlier approaches
are summarized.

* “Chapter 3: Solving Main Robot Photographer Challenges with RGB-D Data” describes two main problems in
robotic photography that can be solved using RGB-D data: human subject detection/tracking and obstacle
detection/avoidance. It then presents an in depth survey of the existing methods for solving these problems
based on RGB and depth data (separately and combined). After the survey, the proposed methods for solving
these problems in the context of an autonomous robotic photography are described.

* “Chapter 4: Development of “Luke”: an Event Photographer Robot” presents the implementation of an au-
tonomous robot photographer. It provides the details of hardware components, software architecture and
individual module implementations, as well as their run-time performance measurements.
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* “Chapter 5: Insights from Robot Photographer’s Deployment in Real-World” summarizes the experiences from
Luke’s deployment in an unstructured real-world event and provides statistical evaluation of the taken pic-
tures. The obtained results are compared with the ones reported for earlier robot photographer approaches.

e “Chapter 6: Conclusions and Proposals for Further Research” sums up the work completed in this dissertation
and the contributions to the field of autonomous robot photography. It ends the dissertation with the

discussion of potential directions for future research.



Chapter 2

Advances and Limitations of Robotic Photography Research

This chapter summarizes the research of autonomous robot photography, starting with the seminal work of Byers et al.
(2003) and continuing with the subsequent methods proposed the last decade. At the end of the chapter, the limitations of
previous approaches are summarized.

2.1 Survey of existing robot photographers

Autonomous robot photographers have first been developed in 2003 (rather late in the context of the autonomous
robots). Due to the the amount of challenges that autonomous robot photographers need to solve for the successful
operation, only a handful of photographer robots have been described up to this date, despite the benefits described
in section . All of the autonomous photographer robots described in scientific literature between 2003-20130

are summarized below.

2.1.1 Lewis, the first autonomous “event photographer” robot (Byers et al., 2003)

The earliest implementation of an end-to-end mobile robot system capable of taking well-composed pictures is
described by Byers et al| (2003, 2004), Smart et al! (2003). Their mobile robot, Lewis, is equipped with an on-
board laptop (Intel Pentium IIT 800 MHz CPU, 128 MB of RAM), a laser range finder and two cameras: a VGA
(640 x 480 pixel) resolution, 30 frames-per-second (FPS) video camera, and a 1.9 mega-pixel (MP) photographic
camera. In order to find the human subjects in the environment, Lewis starts with human skin detection in VGA
camera’s video feed using an approach inspired by Forsyth and Fleck (1999). This approach is based on the insight
that human skin occupies an easy-to-define region in a color space.

For every new environment that Lewis is deployed in, a human annotator needs to identify skin pixels in a small
number of initial training images to increase skin detector’s invariance to lighting conditions. Using the “skin”/“non-
skin” color space areas (derived from these annotations), every pixel in an input VGA frame is classified as belonging
(or not) to a skin region, producing a binary “skin map” image. The contiguous regions in the skin map are

considered as candidate faces.

Using simple geometry, Lewis associates the detected candidate face patches with readings from a laser range finder
(which produces 180 radial distance measurements in front of the robot). After making a further assumption
that all human subjects in the environment are standing adults, the candidate face patches which do not fall into
pre-defined ranges of face sizes and distances from the ground are discarded.

Lewis has two navigation modes: random and intentional. In the random mode, the robot simply avoids the
obstacles while looking for suitable photographic opportunities. In the intentional navigation mode, Lewis pro-
actively navigates to a location that maximizes the photo quality objective function which considers the distance
from subjects, reachability, or presence of obstacles in the path, inter-subject occlusion, ezc. Byers et al! note that

the random navigation mode works best in crowded environments.

After reaching the suitable photographic location, Lewis attempts to achieve a pleasing photographic composition
(based on simple composition rules, like a “rule-of-thirds”) by panning, tilting and zooming the 1.9 MP camera in

'To the best of author’s knowledge.
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Figure 2.1: Lewis, an autonomous “event photographer”. Taken from ()

a closed-loop fashion. When the picture is taken, it is automatically transmitted to a “viewing station”, where the
attendees of the event can browse, print or e-mail the photographs.

2.1.2  Table-top robot capable of human/non-human group picture framing (pampbell and Pillai,
2009)

kfampbell and Pillai (|20051) describe a limited-mobility robot system (moving on a table surface), capable of taking

well-framed group pictures of human and non-human subjects in static environments. All visual computations are
performed using an adjacent PC with Intel Xeon 3.6 GHz CPU, and two RGB cameras connected to their robot: a
high-resolution (5 MP) photographic camera, and a 10 FPS VGA webcam, attached to a pan-tilt head. The high-
resolution camera also operates in a “viewfinder” mode, yielding 5 FPS at QVGA (320 x 240 pixel) resolution.
In order to simplify the hardware design and to avoid camera calibration/alignment problems, subject detection is
performed using the same photographic camera operating in the “viewfinder” mode.

To detect subjects, the robot relies on the assumptions that the scene is static, the photographic subjects are grouped
together (in a plane parallel to the photographic camera’s image plane) and are clearly separated from the background
depth-wise. To identify the subjects closest to the camera, the robot translates 15 centimeters in a direction parallel
to the camera’s image plane and measures the amount of optical flow in the scene using the method by

Iand Kanadel (|198]l). The optical flow field vectors are then clustered based on their velocity, and inconsistent flow

vectors for the same scene region are eliminated to reduce tracking error noise and ignore minor movements in the

scene.

pampbell and Pilla1 defines the region-of-interest (ROI) of a scene as the closest sufliciently large flow vector cluster,

where distances to the clusters are obtained based on the observation that the amount of motion parallax (and thus
the correlated optical flow field velocity) is inversely proportional to the static scene’s depth. After obtaining the
subject ROI, the photograph is taken in a high-resolution mode, the ROI is cropped out from the original image
and, if necessary, scaled/cropped from the bottom to fit the 3:2 output aspect ratio. This allows for the cropped
out photograph to be printed as a 4 x 6 inch landscape image on a connected color inkjet printer.

Given that the robot itself moves on a table surface, a VGA webcam is used for hazard detection. Before moving
the robot, this camera is panned/tilted to face the direction of travel. The robot is then moved by one centimeter
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Figure 2.2: Table-top robot capable of group picture framing using optical flow. Taken from k:ampbell and Pilla1 (IZOOi)

and the amount of motion parallax within the scene is estimated using the same optical flow method. A consistent
presence of a large discontinuity in the optical flow field is treated as an indication of a table edge, in which case
the robot moves to an opposite direction (to permit the required 15 centimeter translational movement).

2.1.3 Robot photographer capable of basic interaction with humans (]Ahn et all, |2004)

() focus on the human-robot interaction aspect of autonomous robot photographers. They describe

an interactive robot photographer with limited mobility, which supports two modes of operation: “background
priority” and “profile shot”. In the former mode, the robot attempts to maximize the amount of background visible
in the resulting shot by moving closer to/away from the subjects as required for optimal framing; in the latter
mode, the robot takes the profile shot of a subject with the zoomed-in camera. In both modes, simple photo-
graphic composition heuristics (like the “rule-of-thirds”, or “no-middle” rule) are applied to obtain the framing
objective.

The choice between “background priority” or “profile shot” photographic modes is made by human subjects, (some-
what unintuitively) by waving the left or right hand. In order to detect human subjects and waving gestures, the
robot uses an input from a VGA resolution RGB camera (processed using an on-board PC with a Pentium IV 3
GHz CPU and 1 GB of RAM, all integrated into an ETRO mobile robot).

For face detection, a de facto industry standard |Viola and ]onesI (|2001|) object detection framework is used. In this

approach, a cascade of “strong” classifiers is composed from Haar-like wavelet features (“weak” classifiers), using

a variant of AdaBoost (lFreund and Schapire{, |1997|) classifier boosting procedure (more details are given in section

@) To reduce the computational complexity of human subject detection, the robot tracks detected faces until
they are lost using the mean-shift based object tracker applied to color-histogram backprojected images (

ind e, 199).

If any faces are detected/tracked, the robot looks for waving gestures in the image regions where the subject’s hands
should be, using heuristics about the human body shape. If these regions contain movement (obtained by frame
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Figure 2.3: ETRO robot platform, on which ’s (2006) robot photographer is based. Left image is the exterior, right
image is the interior of ETRO’ platform. Taken from ()

difference) and skin-colored pixels for a number of consecutive frames, a waving gesture is registered.

The same VGA camera is used for taking the final pictures, which allows to avoid multiple camera
alignment/calibration problems. However, since this camera does not have a built-in flash, resulting images have
poor quality in difhcult lighting conditions. To mitigate this problem, the robot optionally applies the “retinex”

localized color constancy algorithm (lLand and McCanrJ, 197]]), in an attempt to retrieve the real surface reflectance

by discounting the illuminant light. The choice on whether retinex picture enhancement algorithm should be
applied is exposed to the user through the LCD panel attached to the chest of the robot (which also displays the
resulting picture).

2.14 Robot photographer capable of human localization by sound direction (IKim et al.l, |201q)

() propose a mobile photographer robot, which can direct its attention to the human subjects using

audio input. In particular, the robot uses three analogue microphones arranged in a circle at 120° intervals and
the time-difference-of-arrival (TDOA) method to localize the sound source using a FPGA , ) After
localizing the sound source, the robot rotates towards it and starts searching for the human subjects in the RGB
input image. To that end, input from an on-board VGA camera is searched for contiguous patches of human
skin.

For “skin”/“non-skin” pixel classification, a Mixtures of Gaussian model (with four Gaussian components) is fitted
to the skin pixel distribution of the ground-truth tagged training database. Then a given pixel is classified as
belonging to the skin if its Mahalanobis distance to the nearest cluster centroid is within a pre-set threshold (
, ) The top-most sufficiently large and dense skin component in the input image is assumed to correspond

to the human subjects head.

After detecting the human subject, the robot rotates and translates as required to satisfy the “rule-of-thirds” pho-
tographic composition heuristic. In an attempt to further improve the composition quality, the robot tries to avoid

the unintentional dissection lines (lines in the picture that are cutting through the subjects body, see

() and figure .
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Figure 2.4: An example of unintentional dissection lines (black lines in the right image). The red stripe in the background of
the original image (on the left) crosses the subject’s head and thus distracts the visual attention from the subject. Taken from
Shen cal

en et al ().

To detect such lines a Canny edge detector (, ) is combined with the line detection by Hough transform
(lDuda and Hart|, 1972!). If no unintentional dissection lines are found and the human subject is positioned close-
enough between the one-third and two-thirds horizontal lines, ’s robot takes the picture using the same
VGA camera. All visual computations of the robot are performed using an on-board CPU with an Athlon 64 X2
Dual Core 2.01 GHz CPU with 2.5 GB RAM.

2.1.5 Aesthetic guideline driven robot photographer for static scenes (padde and Karlapalcrd,

ot
Gadde and Karlapalerd (|2011|) present a stationary robot based on a humanoid NAO platform (,

200%), which can take pictures of static scenes containing both human and non-human subjects. Their robot works

in an iterative fashion: first of all, a picture is taken using a HD resolution (1.2 MP) camera, mounted on the robot’s
head. Then the picture’s quality is evaluated using three aesthetic criteria explained below. If picture’s quality is
under a pre-set threshold, the camera is repositioned by changing robot head’s angle, a picture is re-taken at a new
position and the process is repeated until the required quality threshold is reached.

Three types of metrics are used to evaluate the aesthetic appeal of a picture: %) the position of the photograph’s
yp pp p p P grap
focus region (extracted using a visual saliency model described below) with respect to the “rule-of-thirds”, %) the
g g y P )
position of the horizon line with respect to the “golden-ratio” rule, and iii) the “high-level” visual features of the

picture (viz. clarity contrast, lighting, simplicity and color harmony).

To extract the region of focus in a given image, the visual attention model by |Achanta et all (|200q) is used. In this

model, the salience map S is obtained by calculating S(z,y) = |1, — I(z, y)|, where I, is the mean pixel value
in input image and I}, is the input image blurred using a Gaussian kernel. The original image is then segmented
using the mean-shift method, and the segments with an average saliency value larger than an adaptive threshold
(two times the mean saliency of the image) are considered to be the focus regions. The picture’s conformance to
the “rule-of-thirds” is evaluated by examining the deviation of centroid of the focus region from the ideal locations

as indicated by this composition rule.

To extract the position of the horizon line, padde and Karlapalem|’s robot uses the vanishing point detector by
() Essentially this detector works by convolving the input image with horizontally oriented Gabor wavelets

and retaining the position/angle of the strongest cumulative response (indicating the location of the horizon line
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Figure 2.5: Roborazzi II, a party photographer. Taken from ()

in the image). The position of the horizon line is then evaluated w.r.z. the “golden-ratio” rule (the ratio between

the areas of rectangles formed by dividing the image using the horizon line should be equal to ).

Finally, to evaluate the image based on the focus region’s visual features, k}adde and Karlapalen4 train a two-class

(“good image”/“bad image”) Support Vector Machine (SVM) classifier using 12,000 ranked training images. Clarity
contrast, lighting, composition and color features features used in training and classification are based on brightness
ratio, spectral (Fourier domain), and HSV/RGB histogram properties, as described by ILuo and Tané (|2008|)

2.1.6 Roborazzi II, a party photographer (bhirakyan et all, |2014)

Roborazzi II, a party photographer robot was presented by Shirakyan et al| in Microsoft TechEd 2012 event in New

Zealand. It is designed as a showcase application for Microsoft Robotics Developer Studio 4 software suite.

For its modus operandi, the robot seemsh to be using two Microsoft Kinect RGB-D sensors to roam around the room
avoiding the obstacles and tracking humans. The sensor used for obstacle avoidance is pointing downwards, while
the sensor for human subject detection is facing forwards. If the robot detects a person ahead, it rotates to center
the person in its FOV (using some rule(-s) of photographic composition), produces an audio signal (“Say cheese!”)
and takes a picture with a high-resolution DSLR camera. Afterwards, the picture is automatically uploaded to
Flickr. All computation seems to be performed using an on-board PC.

As can be inferred from various (mostly non-technical) presentations about the robot, Roborazzi’s vision algorithms
work as follows. For the obstacle avoidance, the robot initially calculates a first-order discrete spatial derivative of the
depth image from the downwards-facing Kinect sensor (thereby performing a primitive edge detection in the depth
image). Then, any points in the image where the derivative exceeds a certain threshold are marked as obstacles,
and the robot navigates away from these points while roaming around the room.

For the human detection, Shirakyan et al| use the skeletal tracking API with Kinect for Windows SDK. In this
API, skeletal tracking is implemented using the approach by IShotton et all (|201 1|) in each depth frame individual

?Since no scientific/technical descriptions exist of Roborazzi II, only a very limited amount of information can be obtained about the
internal workings of the robot.
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depth pixels are classified as belonging to one of 31 body parts using three randomized decision trees (each of 20

levels deep), trained using 1 million images on a 1000-core cluster. Then a mean-shift (Comaniciu and Meer,

2002) approach (with a Gaussian kernel) is used to find the modes of the classified body parts, which are returned

as proposed skeleton joints.

2.2

Limitations of earlier approaches

In the context of the project aims described in section , the main deficiencies of earlier robot photographers

approaches can be summarized as follows:

Unreliable buman subject detection. The robots by Byers et al} (2003) and Kim et al. (2010) use skin pixel de-
tection from the input RGB image as their main method of human localization, even though it is well-known
to be unreliable in varying illumination conditions (for example, see Kakumanu et al| (2007)). Furthermore,
Kim et al/s approach is limited to a single human-subject detection. Ahn et al. (2006) use the Viola-Jones
face detector cascade, which is unable to detect faces with out-of-plane rotations (e.g. profile faces), since the
cascade is trained using only frontal face data. Roborazzi II by Shirakyan et al| (2012) is limited to tracking at
most two human subjects at a time and cannot cope with non-standing human poses (limitations of skeletal
tracking API).

Unsuitability to dynamic scenes. Campbell and Pillai’s (2005) and Gadde and Karlapalem’s (2011) robots are not
suitable for environments where the subjects are moving around. In Campbell and Pillajs case movement in
the background would confuse the optical flow algorithm, while movement of the subjects in the foreground
would confuse the motion parallax estimation and would break the assumption that subjects are in a plane
parallel to the camera. In turn, Gadde and Karlapalem’s robot relies on the fact that environment remains
static while it reorients the camera to improve the picture’s composition. If subjects keep moving, the robot
might not converge to a composition that reaches the necessary quality threshold.

Limited mobility. Campbell and Pillajs robot moves only on a table surface (the authors argue that it is done
to “better interact with humans and to photograph human subjects from a more pleasing angle”, Campbell
and Pillai (2005)). The robot by Ahn et al| rotates towards the caller and then moves only backwards and
forwards to satisfy the “rule-of-thirds” in “background priority” mode (as described above), or zooms the
camera towards the caller in “profile shot” mode. Gadde and Karlapalem’s robot only reorients the camera
angle (which is mounted in a humanoid robot’s head) to satisfy the composition quality criteria.

Inadequate photographic camera quality, due to the lack of flash (in robots by Ahn et al}, Kim et al) and Gadde
and Karlapalem) and low resolution (0.3 MP by Ahn et al! and Kim et al., 1.2 MP by Gadde and Karlapalem,
1.9 MP by Byers et all).

Limited availability for further research/teaching, since i) the source code/hardware designs are not publicly
available for any of the robots described in this chapter, which significantly restricts reproducibility of the
results and further research, i) the robots use expensive equipment (like the laser range finder used by the
robot of Byers et al]) or are built on expensive platforms (like NAO, used by Gadde and Karlapalem), and
i41) most of the platforms on which the robots are based are proprietary (i.e. not available off-the-shelf; this
includes robots by Byers et al., Campbell and Pillai, Ahn et al. and Kim et al)).

The autonomous event photographer robot proposed in the following chapters of this dissertation attempts to lift

these limitations.



Chapter 3

Solving Main Robot Photographer Challenges with RGB-D Data

This chapter surveys the solutions to two main problems in autonomous robotic photography: buman subject detection/-
tracking and obstacle detection/avoidance. A reliable solution to the human detection/tracking problem is essential since the
quality of a photo’s composition depends directly on accurate buman localization in the image. Likewise, a solution to the
obstacle detection and avoidance problem is necessary for the robot to be able to randomly wander about in an unstructured

environment, while avoiding collisions with any obstacles that may appear in its path.

This chapter starts by thoroughly surveying previous approaches to solving these challenges using colour and depth data
(separately or combined). A reader familiar with the typical computer vision/machine learning solutions to these tasks is
encouraged to skip directly to the end of the chapter (section @), where the proposed RGB-D data based methods are
described.

3.1 Human subject detection

As discussed in the project’s aims section (), the robot should be able to produce well-composed pictures of
humans during various events. To accomplish this task, an autonomous robot photographer needs to be able to

detect human subjects in its environment.

Since this task is absolutely crucial to the robot photographer’s performance (inaccurate human subject detection
leads to wrong picture composition, which in turn leads to bad quality pictures), the sections below summarize
these techniques in detail for both image and depth data, starting with human detection in images.

3.1.1 Survey of image-based body/face detection methods

The goal of human body/face detection tasks is to determine the positions and sizes of human bodies and/or faces if
they are present in the input images. The human body detection task is complicated due to a large within-class vari-
ability of human images, arising from changes in pose or clothing, lighting, occlusions and background variations.
The face detection task is further complicated by the additional sources of variance arising from presence/absence

of facial features (beards, moustaches, different haircut styles, glasses), and changes in facial expression.

Due to their immediate applicability in intelligent vehicle, surveillance, security, HCI, robotics and other areas,
both of these tasks have received a significant amount of research interest over the years, and a large number of
different techniques has been proposed (e.g. see the human detection surveys by Dollar et al} (2012), Enzweiler and
Gavrila (2009) and face detection surveys by Zhang and Zhang (2010), Yang et al| (2002)).

While the existing body of research on these task is very large (e.g. a survey by Yang et al| alone references more
than 150 reported face detection approaches), a few of the most influential recent techniques are summarized below,
starting with a very brief overview of statistical approach to object detection.

16
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3.1.1.1 Generative vs. discriminative statistical object detection

Statistical approaches to object detection in images are often split into generative and discriminative (see, for
example, Ng and Jordan (2001)). Generative approaches model the joint probability of object’s appearance = and
its class y (i.e. Pr(x,y)). Often this is achieved by learning a class conditional probability of generating a certain
object’s appearance (i.e. Pr(x|y)), and the class priors (Pr(y)). Combined with the Bayes rule this approach
allows to find the class § that maximizes the posterior probability Pr(y|z) for a given object’s appearance z,
by calculating § = argmax, Pr(y|z) = argmax, Pr(z,y) = argmax, Pr(z|y)Pr(y). An example of an early

generative approach for human detection proposed by Gavrila and Philomin (1999) is given in section .1 1%

In contrast, discriminative approaches learn the boundary that separates the object’s classes, i.e. they directly model
the (scaled) posterior distribution Pr(y|x). As argued by Vapnik (1998), generative classifiers need to solve a more
complicated modelling problem to obtain Pr(z|y), even though the joint distribution serves just as an intermediate
step in the posterior distribution calculation. Often such attempts run into data sparsity problems due to the “curse”
of high dimensionality. For this reason, the majority of state-of-the-art human/face detectors use discriminative
techniques (Dolldr et al), 2012, Zhang and Zhang, 2010), in which the discriminative classifiers are combined with
the human/face feature descriptors to obtain binaryﬂ classifiers. Both the classifiers and the features that they use
are described below.

3.1.1.2 Discriminative classifiers frequently used in human detection

Widely adopted discriminative classifier learning paradigms include feed-forward multilayer neural network training
using backpropagation (Werbos, 1974), adaptive weak-classifier boosting (AdaBoost, Freund and Schapire (1997))
and maximally-separating hyperplane learning using support vector machines (SVMs, Cortes and Vapnik (1995)).
Since a large number of human body/face detection methods are based on these features discriminative classifiers,
each of them is individually described below, starting with the support vector machines. (The human descriptor
features used by these classifiers are much more diverse and are described later.)

Support Vector Machines Linear SVMs, as originally introduced by Cortes and Vapnik (1995), can be used for
fast and accurate binary classification of linearly-separable data.

Given a set of training examples A = (@1, y1), ..., (T, yi) containing N-dimensional data points @; and their
classes 3;, SVMs construct an optimally separating hyperplane w’@ + b = 0, which maximizes the distance
between the hyperplane and the closest positive/negative training points (the “margin”). The boundaries of the
margin are described by the support hyperplane equations w?x + b = £1 (by appropriately rescaling w and b,
since it does not change the decision hyperplane), with the distance between them equal to HETH (illustrated in

image a) of figure El])

The parameters of the optimally separating hyperplane w and b (normal vector and offset from the origin, scaled
by ||w]|) can be found by solving the following quadratic optimization problem:

: 2
p— w N
min o [[w]] 6.1)

st. yi(wTz;+b)>1, fori=1,..k,

Y“Human”/“non-human” or “face”/“non-face”.
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Decision hyperplane
/ Support hyperplanes

/)

in N
Margin Support vectors

a) b)

Figure 3.1: Support Vector Machines: ) a regular linear SVM, b) a soft-margin linear SVM. The decision (maximally
separating) hyperplane is described by equation w” @ +b = 0, support hyperplanes are described using equations w” x +b =
+1.

or its dual Lagrangian form:

k k
1 T
max g o — = E ajo(x; )
ALy ) 2 S
i=1 3,j=1

st.  a; >0, fori=1,....,k, and (3.2)
k
Z ay; = 0.
=1

After constructing the maximum-margin hyperplane, the class of an unseen N-dimensional point & can be deter-
mined by examining on which side of the hyperplane the point lies, i.e. by calculating f(x) = sign(w?x + b)
or equivalently f(x) = sign(3%_, ayyi(xT @) + b). Since only support vectors will have non-zero Lagrangian
parameters oy, new data points can be very efficiently classified by SVMs.

SVMs can deal with non-linearity in two ways: by allowing “soft” margins (i.e. allowing some outliers to be
misclassified) or by using a non-linear transformation to project the data points from the input space to a high- or
infinite-dimensional feature space.

In the former case this is achieved by allowing a given point x; to violate the margin by £ > 0 (i.e. to have the
distance to the separating hyperplane of ﬁ < HTlll’ see image b) in figure E.l for illustration). This results in
the following primal form of the optimization problem:

k
1 2
min —||lwl||*+C i
wvbvglw'wfk’ 2|| H ;gl

(3.3)
st yilwlz; +b) >1—&, fori=1,...,k, and

& >0, fori=1,..,k,

where C' controls the trade-oft between the margin size and the toleration of misclassified outliers.

In the latter case, the “kernel trick” is used. The key insight there is that the linearly non-separable data in the input
space could be projected to the inner product space (with its associated norm) in which the data becomes linearly

separable (see figure @) This can be achieved by replacing all inner products u”

v with the inner products in the
projected space K (u,v) = (¢p(u), p(v)), where ¢(-) is the projection operator. It is important to note that the

explicit representation for ¢(+) is not required, provided that K (u, v) satisfies the Mercer’s (1909) condition.
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c) d)

Figure 3.2: “Kernel trick” illustration using linear SVMs. The original 2-dimensional non-linearly separable input data from
image a) is transformed into a 3-dimensional feature space using the quadratic transformation [z1, z2] — [71, 22, 23 + 23],
where it becomes linearly separable. The obtained decision/support hyperplanes are shown in image ¢), and the final decision
boundary (when transformed back into the input space) is shown in d).

Finally, the obtained quadratic optimization problems can be solved using industry standard QP solvers (see

() for reference).

Weak-classifier boosting using AdaBoost A different approach of learning discriminative classifiers is proposed

by IFreund and Schapire| (|1997|). In particular, IFreund and Schapire| proposes a method to combine a given family

of “weak” classifiers (where classifiers are “weak” in a sense that they perform only marginally better than random)
into a “strong” classifier through a number of training rounds, where in each round ¢) the best weak classifier for
the current training data is chosen, and 4¢) the training example weights are decreased/increased based on their

correct/incorrect classification respectively.

The final strong classifier is obtained by taking a weighted linear combination of weak classifiers, where the weights
assigned to individual weak hypotheses are inversely proportional to the number of classification errors that they

make.

This approach is formalized in ApaBoost algorithm (B.1.1.1) and illustrated in figure @

As proven by ISchapire and Singer| (|1994), the training error of a strong classifier obtained using AdaBoost decreases
exponentially in the number of rounds, i.e. using the notation from algorithm , the training error at round
T is bounded by

N

N
§§ﬂsign(f<xi>> £ yE1 < LS o (cutrn), where f - {

i=1

1, ifyi = 1,
—1, otherwise.

(3.4)

Feed-forward multilayer neural networks A third common approach of learning discriminative classifiers in-
volves learning the weights of artificial neural networks (ANNs). The main building block in an ANN is a single

neuron, whose behaviour is defined by a weight vector w = [wp, ..., w,]T € R™"! and an activation function
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Figure 3.3: A simplified illustration of ApABoosT weak classifier boosting algorithm ). In this training sequence,
three weak classifiers that minimize the classification error are selected; after selecting each classifier, the remaining training
examples are reweighed (increasing/decreasing the weights of incorrectly/correctly classified examples respectively). When
all three classifiers are selected, a weighed linear combination of their individual thresholds is taken, yielding a final strong

classifier. Adapted from

o1
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Algorithm 3.1.1.1 Weak classifier boosting using AdaBoost. It requires N training examples given in the array
A = (x1,y1), ..., (N, yn) (where y; = 0 for a negative and y; = 1 for a positive training example), a family H
of weak classifiers and a number of rounds 7" to construct a strong classifier. The result of the boosting is a final
strong classifier f, which can be used to classify an unseen example = based on the sign of f(x).

ApaBoost(A, H,T)

1/ Initialize training weights (where m is the count of negative, | is the count of
2/ positive training examples).
3 for each training example (z;,v;) € A
4 if Y; = 0
5 W14 < ﬁ
6 else
7 W1, < 2%
8 fort<1toT
9 /1. Normalize the weights:
10 for each weight w; ;
11 e
’ D=1 Weyg
12 N 2. Select the best weak classifier hy(x) € H which minimizes the training error €:
13 hy <= argming, ., > wei[M(x:) # yil] # where [] is the indicator function.
14 €0 < 2 weilhi(®i) 7 il
15 /3. Update the weights:
16 for each training example (x;,v;) € A
17 if ht(ml) = Y;
18 Wip1,i 4 Wi T
19 else
20 W1, < W

21 return f(x) = Z;‘F:l(ht(ac) - %) log 1%,?

o : R — R. In particular, given an input vector = [1, ay, ..., an)T the neuron produces an output by calculating

T

o(x’ w), as illustrated in figure B.48.

A single neuron can be trained by minimizing the square error, which given a set of training examples {x;, y; }
(where &; € R" is a vector of inputs, and y; € R is the observed output) can be defined as

(w) =Y (0@ w) —u)”.

7

The error can be minimized using gradient descent method by initializing the weights vector to a random vector
wp € R and using the following iterative weight update rule, until the weights change by less than a predefined

This subsection presents the derivations using the sigmoid activation function (i.e. o/(x) £ m), but other activation functions,

like hyperbolic tangent o'(z) = tanh(z), arctangent o(z) = 2 tan~ ' (%z), error function o(z) = erf (@x) or simple algebraic

functions like o(z) = —2= or o(z) =

\/ 14xz2

can also be used.

_z
1+z]



3.1. HUMAN SUBJECT DETECTION 22

Figure 3.4: Behaviour of a neuron with the sigmoid activation function. Neuron’s weights are given by wo, ..., w,, and the
inputs are given by 1, ..., .

threshold:
& (w)

—-n ow - 63)
= w; — 2772 (o(x] wy) — yi) o(x] wy) (1 — oz wy)) @, '

Wiy = Wy

where 7 is the gradient descent step size.

While a single neuron can only learn a separating hyperplane (i.e. it is limited to linearly separable data), a multilayer
neural network can approximate more sophisticated functions. In fact, Cybenkd (1989) has proved the universal
approximation theorem for sigmoid activation functions, which states that a three-layer feed-forward neural network
(with a finite number of hidden neurons) can be trained to approximate any continuous non-linear function with

arbitrary precision.

The weights for multilayer feed-forward neural networks can be learned using a backpropagation algorithm (Wer-

bos, 1974), summarized below.

Let w;_s; be the weight of the synapse connecting neurons ¢ and 7, let the sum of the weighed inputs of neuron
J g ynap g J> g p
J be denoted by s; = >, zrwy—,; where k iterates over all neurons connected to j, and let the output of j be

written as 2; = o(s;), where o is j’s activation function (see figure @ for illustration).

e N\,
: A@_‘\ _2 -
- - \\\7/

8= D2, Wiy 5 //

P o
LS

‘j} hy c/ 777‘\\ i
% @H\f/

Figure 3.5: An excerpt from a multilayer feed-forward network, illustrating the notation described in the text.

Furthermore, let the output of the network be defined as hq, (), where the weights vector w contains all weights

in the network, i.e. w = (w;_;) for all ¢, j. Then, for the same error measure

{(w) = Z Ei(w) =) (hw(zi) =)

(2
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the gradient descent update for the weights can be described using

0¢;
wt+1=wt—7lz {(w) )

ow
wy
where
8§i(w):2(h () — A)Z,ahwi("”i)
QW Wi Y S G
and
Do (5) o' (sk), if k is an output neuron,
w L o hw ;
Tsk_ Z aas(:j)wk—wffl(sk), otherwise.
from k

The error gradient can then be calculated by placing the it example at the inputs of the neural network, calcu-
lating s5, and zj, for all the nodes (the “forward-propagation” step) and working backwards from the output node

calculating ahé"f(:%) (the “backpropagation” step).

3.1.1.3 Human/face descriptor features

The discriminative classifiers as described above use feature vectors both for training and for classification. The most
common descriptor features from which these vectors are constructed are described below, while further examples
of discriminative detectors based on these features are discussed in the appendix @

Image intensities The simplest possible approach of obtaining the features to be used with discriminative clas-
sifiers is to use the raw image intensities.

One of the earliest advanced face detection systems developed by Rowley et al. (1998) uses this approach. In
particular, Rowley et al| describe a few three-layer feed-forward neural network configurations, connected in a

retinal fashion. A representative multilayer network (“network 1”7 in the original source) consists of:
* An input layer, which takes a 20 x 20 pixel size, intensity normalized, grayscale input image.

* Two copies of the hidden layer, which contain 26 neurons each. Four neurons in this layer are connected to
non-overlapping 10 x 10 pixel regions, 16 neurons connected to non-overlapping 5 x 5 pixel regions and 6
neurons connected to overlapping 20 x 5 pixel horizontal regions.

* An output layer, which contains a single real-valued output neuron, which is connected to the outputs of all
hidden layer neurons. This neuron produces a (scaled) estimate of Pr(face|image).

Nearly 3,000 weights of “network 1” are learned in a supervised fashion: around 15,000 face images (generated by
slight rotations, translations, scaling and mirroring of over a 1,000 original face images) are used as positive training
examples; negative training examples (not containing faces) are bootstrapped from 120 large-resolution images
of scenery, using false positive misclassifications of the neural network at each iteration of the backpropagation
algorithm.

Faces are then detected using a sliding-window approach over a multiscale pyramid representation of the input
image. In order to reduce the number of false positive detections, Rowley et als system uses multiple neural
networks in parallel (trained on different subsets of the data), combined with different schemes of arbitration. The
behaviour of the overall system and the structure of “network 1” is illustrated in figure @
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Figure 3.6: Rowley et als (1998) face detection system based on feed-forward multilayer neural networks, trained using raw
image intensities as the input features. Adapted from Rowley et al| (1998).

Principal components Principal Component Analysis (PCA, Pearson (1901)) is one of the best known feature
extraction/dimensionality reduction techniques. Given a set of observations produced by potentially correlated
variables, PCA finds the eigenvectors corresponding to the largest-magnitude eigenvalues of the data’s covariance
matrix (called “principal components”), and re-projects the data in these directions. In this new coordinate system,

the observations are guaranteed to be uncorrelated.

Given a set of aligned human images (of equal size) PCA can be used to extract the principal components, which
describe the most variance in the training data (by discarding the principal components with small eigenvalues).
Then the human images can be succinctly represented in this new, reduced dimensionality space, and these repre-
sentations can be used as input features for discriminative classifiers. A common way of finding these eigenvectors
(principal components) and their associated eigenvalues is by using a Singular Value Decomposition (SVD).

Given a matrix X containing m data samples in the columns (with n rows representing individual features), X
can be decomposed as X = UX VT using SVD, where U and V are orthonormal matrices, and X is a diagonal

matrix containing non-negative values.

Then X’s covariance matrix C' can be expressed as

c-1xxT

n

= %(UEVT)(UEVT)T

1
=_yuxvlivTy”
n

1
=U (22> U’ (Using the orthonormality of U, V' and diagonality of X).
n

The principal components (= eigenvectors of the covariance matrix C) can be obtained by reading off non-zero
columns of U. The associated eigenvalues are given on the diagonal of matrix %22.

This technique can be applied to aligned, grayscale, M x N -pixel size human images by subtracting the mean image
from all training images, “linearizing” individual training images by putting all pixel intensities from the image into
asingle M x N length column vector and combining these column vectors into the data matrix X.

Turk and Pentland (1991) apply this technique in face detection by extracting the principal components (which they
named “eigenfaces”) from an aligned grayscale face training set. A representative example of eigenfaces is shown in

figure @
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Figure 3.7: Twelve eigenfaces with the corresponding largest eigenvalues, extracted from the Labeled Faces in the Wild
(, ) dataset. Adapted from IPedregosa et all (|2011).

After extracting the principal components ITurk and Pentlanc‘ consider a reduced-dimensionality “face space”, which

is obtained by keeping just the top k eigenfaces with the highest corresponding eigenvalues. Human face images
projected into this space stay relatively similar to the original images (since the top eigenfaces successfully capture
a large amount of variance in the input image), while non-face images projected to the “face space” appear very
different. This property is exploited using a concept of “face map” &, where each point on the face map &(z,y)
corresponds to the distance between the image window centered at (z,y) and this window’s projection onto face
space. The faces can then be detected by searching for the minima in the face map.

Haar wavelets IPapageorgiou and Poggid (IZOOq) propose the use of 2-dimensional Haar wavelets to encode the

features of the human visual appearance.

In a single dimension Haar wavelets are defined as follows. Let j be the “resolution” of a 1-dimensional image
containing 27 pixels. Then the basic Haar wavelet at resolution j is defined as ¢ZJ =2 W(Vx — i) for i =
0,...,27 — 1, where
1, 0<wz<3,
Plo)=4-1, <a<l,

0, otherwise.
Furthermore, the scaling function of Haar wavelets is defined as qbf = V2¢(27x — i) fori = 0,...,29 — 1,

where
1, 0<x <1,
o]

0, otherwise.

Given this single-dimensional Haar wavelet definition, lPapageorgiou and Poggio| propose the following 2-

dimensional generalizations of Haar wavelets:

* “Vertical” wavelets, obtained by taking a tensor product of a wavelet with a scaling function, ¢ (z,y) =

Y(z) @ é(y),

* “Horizontal” wavelets, obtained by taking a tensor product of a scaling function with a wavelet, ¢, (x,y) =

o(z) @ ¥(y),

Figure 3.8: Two-dimensional Haar wavelets with square support, as described by IPapageorgiou and Poggid (IZOOd) From left
to right: vertical, horizontal and diagonal 2D Haar wavelets.
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* “Diagonal” wavelets, obtained by taking a tensor product of two wavelets, ¢q(x,y) = 1 (z) ® ¥(y).

Furthermore, they define these wavelets as always having a square support, yielding the wavelets illustrated in figure

Finally, to obtain a richer model of humans, [Papageorgiou and Poggiol use an over-complete wavelet vocabulary,

which is obtained by allowing a 75% percent spatial overlap between wavelets. For the 128 x 64 pixel window
and two wavelet resolutions (32 x 32 and 16 x 16 pixels), this approach yields a vocabulary containing 1,326

wavelets.

To reduce the detector’s sensitivity to lighting, lPapageorgiou and Poggid calculate the Haar wavelet feature responses

individually in each of the R, G, B channels and keep only the one with the highest absolute value. This yields a

1,326 feature vector representing an input image.

The detector itself is based on the SVM classifier as described above, with a quadratic kernel (K (z,y) = (x’y +
1)2). It is trained using 1,800 positive training images (containing humans) and 16,726 negative training images

(guaranteed not to contain humans).

The average wavelet responses to the images in the training set (normalized and encoded in grayscale) are shown

in figure @

Vertical Horizontal ~ Diagonal Vertical Horizontal ~ Diagonal

Figure 3.9: The average Haar wavelet responses (normalized and encoded in grayscale) to the images in the training set of
lPapageorgiou and Poggi(i’s (lZOOd) human detector. Reproduced from lPapageorgiou and Poggid (lZOOd)

Haar-like features lViola and ]one4 (|20041) propose the use Haar-like features, which generalize 2-D Haar wavelets

of lPapageorgiou and Poggi(i by allowing non-square support and additional configurations (see figure )

These Haar-like features are further generalized by ILienhart and Maydt (IZOOZI), by allowing different feature ori-

entations and adding a few more possible configurations (see figure B.11))

The values of these features can be efficiently calculated using “integral image” representation: given a grayscale
input image I(z,y), the integral image is defined as I(z,y) = > 1, o, [(2',y') (see figure . Using
dynamic programming the integral image can be constructed in O(n) time, where n is the number of pixels in the

input image.

Figure 3.10: Two-rectangle, three-rectangle and four-rectangle Haar-like features, as proposed by IViola and ]onesl (l2004l).
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Figure 3.11: Extended set of Haar-like features, as proposed by ILienhart and Maydt| (|2002!).

Then the integral of any rectangular area in the input image can be evaluated in four array references (see figure ),
meaning that e.g. a three-rectangle Haar-like feature response can be calculated using eight array references.

In a seminal work |Viola and ]onesi (|2004‘) propose a Haar-like feature based attentional face detector cascade which

achieves high detection/low FP rates and performs in real-time. A given input image must be classified as a “face”
by all layers in the cascade in order to have the final “face” classification; if any of the cascade layers reject the image,
its processing is immediately stopped. Due to this “immediate rejection” property, each layer is required to have
high detection rates, but very modest FP rates. Putting it in context, if every layer has 99% detection and 50% FP
rates, then a final 15-layer cascade would have 86% detection and 0.003% FP rates.

The individual layers in this attentional cascade are obtained by combining Haar-like features with weak classification
power into a strong classifier using AdaBoost ) Weak classifiers are being added into the strong classifier
until the layer achieves a very high detection rate (around 99%) with a modest FP rate (around 50%) on the test
set. Furthermore, each of the layers in the cascade is trained on the “hard” negative training examples, which are
obtained using the FP misclassifications of the earlier layers of the cascade. This means that the layers further
down the cascade contain more features (and thus are more time consuming to evaluate), but at the same time,
early layers can be evaluated very rapidly, especially using the integral image representation as in figure . Since
faces are being detected using the sliding window approach over the input grayscale image, this allows the majority
of windows (which are likely not to contain any faces) to be rejected rapidly, with the discriminative power of the
cascade concentrated on face-like areas of the image.

(0,0)

Figure 3.12: Integral image representation by
(). The value of the integral image I at coor-

; . ~ values: D = T.T4 4 —T T3 yg)—I(.IQ,yQ)-l-I(IEl,yl).
dinates (z,y) is defined as I(z,y) = >°,c, oy 1 : Taken from ().
ﬂ!a a

where [ is the original grayscale image. Taken from

s (012,

Figure 3.13: Method to rapidly calculate rectangle feature

Local binary patterns First introduced by pjala et all (|1996|), local binary patterns (LBPs) attempt to achieve

lighting invariance while retaining Haar-feature-like sensitivity to local spatial patterns. The original LBP operator
defines an 8-bit value for each pixel in the input grayscale image. This value is derived from a 3 x 3 pixel size
neighbourhood of each pixel by binarizing the neighbourhood pixel values using the center pixel value as a threshold,
and arranging the results into a binary number (see figure for illustration).



3.1. HUMAN SUBJECT DETECTION 28

Input image Pixel neighbourhood {E:} @ {5}
Thres- LBP value ﬁ @

Wing' 00011111 Spot Spot/flat  Line end Edge Corner

Figure 3.15: Examples of spatial pattern prim-

itives that LBP features can detect. Adapted
Figure 3.14: Local binary pattern (LBP) feature calculation. from Hadid et al| (2004).

As a result of this local thresholding, LBP features are to a large degree lighting-invariant; furthermore, they can
detect various spatial pattern primitives (a few examples are shown in figure )

The LBP descriptors have been further extended in the work of Ojala et al| (2002), by allowing different neigh-
bourhood sizes, and describing rotation-invariant and “uniform” families of LBPs. In the first case, the value of the
operator LBPp p(z,y) is obtained by thresholding P equidistant pixels on a circle of radius R centred at point
(x,y) (illustrated in figure ) Such operator can take one of 2F possible values.

The “uniform” patterns are defined as the ones which have zero or two “0 — 1” or “1 — 07 transitions if
the pattern is considered to be circular (e.g. patterns 00001100, 11100000 and 11111111 would be considered
uniform, but a pattern 00101000 would not). This family is denoted LBP‘;,% > in the case of P = 8 there are 58
such patterns.

Similarly, rotation-invariant LBP patterns are defined as
LBP} = min{ror(LBPpg,i)|i =0, ..., P — 1},

where ror(z, y) is a rotate-right operator which rotates a binary input « by y bits to the right. In this case, patterns
000011119 = 151¢,000111109 = 3010 and 111000012 = 22519 would be mapped to the same rotation-invariant
pattern 000011115 = 1510.

These features are used in the face detector by Hadid et al) (2004). They use a standard sliding window approach,
where 19 x 19 pixel size window is scanned over the image pyramid (with each layer subsampled at the scale 1.2).
To obtain a face representation using LBPs, Hadid et al| divide the 19 x 19 window into 9 overlapping regions
of 10 x 10 pixels. In each region a LBP4; operator is used to obtain a 16-bin histogram of LBP values. These
histograms are concatenated into a single 144-bin histogram. Furthermore, a LBP‘SL?‘l operator is applied to the
whole 19 x 19 pixel image, and a 59-bin histogram is assembled (putting all non-uniform patterns into a single
bin). The combined 203-bin histogram is used as a feature vector representing the face.

For the actual classifier that determines the presence/absence of a face in a given window, Hadid et al. use an
SVM classifier with the quadratic kernel, trained using 6,000 face images and 14,560 bootstrapped non-face pat-

terns.

Another LBP-based face detector is described by Zhang et al! (2007), where they extend the basic LBPp r features

[TT] (@0 @]
RS B RENRE N
8 e[| @ d
- o [ [e® o °
el 4 |4
LSl hd
[T RACA A
P=8,R=1.0 P=12,R=25 P=16,R=4.0

Figure 3.16: Examples of extended LBP feature set. Adapted from Ojala et al! (2002).
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Figure 3.17: Multiple block local binary pattern (MB-LBP) feature calculation.

to deal with multiple pixel blocks, instead of individual pixel neighbourhoods (illustrated in figure ) These
multiple block LBP (MB-LBP) features are used in decision tree weak classifiers, which are boosted into a strong
classifier using AdaBoost.

Local receptive fields Extraction of the most important non-adaptive features can be viewed as an optimization

problem w.r.z. classification task. Analogously, finding the feature sets that adapt to the underlying training data

set can be seen as part of this optimization problem (lEnzweiler and Gavril4, |2009|).

Adaptive local receptive fields (LRFs) introduced by IFukushima{ (|198q) provide a way to learn the relevant features

during the training using a three-layer feed-forward neural network with the following layer contents (graphically

illustrated in figure ):
* The first (input) layer has one neuron for each pixel of the input grayscale image 1.

* The second (hidden) layer is composed of N “branches” Bj—i . n, where each neuron in every branch is
connected to a fixed-size local region in the input layer, called the neuron’s local receptive field.
() who first described LRF/ANNS for human tracking, used 9 x 9 pixel size LRFs in the spatial

dimension.

The LRF locations of individual neurons in the same branch are non-exclusive, i.e. they are allowed to
overlap. Furthermore, each neuron in a given branch B; shares the same set of weights W;, where
|Wi| = number of pixels in the LRF. Effectively, these two conditions ensure that each branch encodes
some translation-invariant local feature of the image.

* The third and final (output) layer consists of two fully-connected neurons, representing the scaled posterior
probability estimates for human/non-human classes respectively.

This neural network can be trained using a standard backpropagation-like approach, using the gradient descent
optimization (see I\Wéhler and Anlaufr (|199q) for more details). After training, the weights of each branch in the

Pr(humanlimage) ~ Pr(—buman|image)

Output layer
(full connectivity)

Hidden layer
(branches of local
receptive fields)

Input layer
(input image J)

Figure 3.18: A three-layer feed-forward neural network structure for local receptive field learning. Adapted from
o0
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LRF 1 LRF 2 LRF 3
weights weights weights

LRF 1 LRF 2 LRF 3

a)

Figure 3.19: Three example 5 x 5 pixel LRF features with the corresponding regions of their discriminative power. Image
a) contains the hidden layer weights for each of the three LRF features (brighter rectangles correspond to higher weights).
Image b) contains the weights from the “human” detection neuron in the output layer corresponding to each of the LRF
features on the left, indicating the regions where these LRFs have most discriminative power for the “human” class. Adapted

from IEnzweiler and Gavril4 (IZOO%)

hidden layer can be extracted to be used as features in generic classification methods. Three examples of extracted

LRFs are visualized in figure .

Interestingly, IMunder and Gavri14 (|2006|) report that using these extracted features in a SVM classifier with a
quadratic kernel achieves better human detection rates than using them in ANNs.

Histogram of oriented gradients (HOGs) The human detector features presented by IDalal and Triggsi (|200$
are based on the idea that the localized distributions of edge directions have enough information to represent the

shape of an object, while being relatively invariant to local geometric transformations.
These distributions are constructed using the following procedure:
1. A gradient of a given grayscale input image [ is calculated.

To achieve this, the original image I is convolved with G}, = [~1 0 1] and G, = [—1 0 1]T filter kernels
to obtain discrete approximations of horizontal and vertical derivatives of the image (Ip, = I * G}, and

Iy, = I x G, respectively). Then, the image gradient’s magnitude and orientation images are calculated

using |V (z,y)| = /Toz(z,y)? + Loy (z,y)? and V,(z,y) = tan™* Loy(@.9) (ihis process is illustrated in

Iaz(ff,y)
figure )
2. The detector window is divided into rectangular (R-HOG) or circular (C-HOG) cells (Dalal and Triggs

suggest the use of 8 X 8 pixel sized rectangular cells for the human detection task).

Figure 3.20: Image gradient calculation. Image a) shows the original input I, image b) shows the horizontal derivative Ip,;,
image ¢) shows the gradient’s magnitude |V (z, y)|, and image d) shows the combined gradient V(z, y).
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3. Within each cell a discretized histogram of edge orientations is calculated (using edge’s magnitude as its

contribution to the histogram). Dalal and Triggg recommend the use of 9 orientation bins spaced at 20° over
0°-180° (ignoring the gradient’s sign).

4. To provide better invariance to changes in the illumination, cell orientation histograms are normalized using
overlapping blocks, which in the recommended implementation occupy 16 x 16 pixels and contain 2 x 2
cells. Due to the block overlap, each cell contributes multiple components to the final feature vector (each
normalized in a different block).

The whole procedure of calculating histogram of oriented gradients features is graphically summarized in figure
3.21.

Feature vector calculation _nﬂu:uﬂﬂuﬂuﬂaﬂﬂuﬂ‘.uﬂ_

Block norma-
lization

Orientation
histogram

Gradient

Input
image

Figure 3.21: Histogram of oriented gradients (HOG) feature calculation. Adapted from IEnzweiler and Gavril4 (|200ﬂ).

To construct a sliding-window human detector based on HOG features Dalal and Triggg train a two-class linear

SVM using 1,239 positive training examples (together with their vertical mirror images) and 12,180 negative training
images (guaranteed not to contain people). In the spirit of |Viola and ]ones| (|2001|) detector cascade, Dalal and Triggs

retrain the SVM using misclassifications from the first training round (“hard” training examples, together with the

original negative training images) to improve the final classifier’s performance.

HOG features are also quite similar to the scale-invariant feature transform descriptors (SIFT, ()) The
key differences between these two types of descriptors are that 7) SIFT descriptors are computed only at the image
key points (as opposed to all cells in a grid), i) are pre-processed after calculation to achieve some degree of
scale/rotation invariance, and i7i) are most often used for object recognition, not classification.

Shapelets In an approach that combines LRF and HOG descriptor ideas, babzmeydani and Mor1 (|2007|) present
a way to automatically learn gradient-based human descriptor features.

Their method consists of three steps:

1. The “low-level” features are obtained by calculating absolute gradient responses of the input image in four
different directions, and averaging these responses in the neighbourhood of each pixel. Formally this is
achieved by convolving the input image I with the directional gradient kernel GdE, taking the absolute
values of gradient magnitudes and convolving the result with the box filter B (a 5 x 5 matrix containing %
in all entries), i.e.

Sq = |I x Gy| x B,

where Sy is the resulting low-level feature.

Horizontal G, and vertical G, kernel examples were presented in the description of HOG features; Sabzmeydani and Mori also use
two diagonal kernels.
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2. The detector window is discretized into smaller sub-windows (Sabzmeydani and Mori propose the sub-
window sizes of 5 x 5, 10 x 10 and 15 x 15 pixels), and AdaBoost algorithm () is used to combine all
low-level features S;(z,y) from a given sub-window 7 into a strong-classifier f;(z,y), called a “shapelet”.
These shapelet features are obtained for each sub-window i.

The most important low-level features selected in all shapelets are shown in figure .

3. Once more, AdaBoost algorithm is used to combine the obtained shapelets f;(z,y) into a final human

detector. The low-level features present in the shapelets selected by the final classifier are illustrated in

figure .
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Figure 3.22: The most discriminative low-level features se- Figure 3.23: The low-level features present in the shapelets
lected using AdaBoost in individual shapelet training. The selected using AdaBoost in the final human detector. The
image on the left shows the positive parity low-level features image on the left shows the features present in the positive
weighed by their contributions to all shapelets, the image parity shapelets, the image on the right shows the features
on the right shows the negative parity low-level features. in the negative parity shapelets. Taken from Sabzmeydani
Taken from Sabzmeydani and Mori (2007). and Mori (2007).

3.1.1.4 Other approaches for human/face detection in images

Human detection using a hierarchy of shape templates In Gavrila and Philomins (1999) approach a discrete
hierarchy of human shape templates is constructed automatically (based on the shape similarity) in a bottom-up
fashion, from a library of exemplar human shapes (using around 1,000 of manually assembled shape contours,
replicated at 5 scales).

At each layer of the hierarchy, the simulated annealing algorithm (Kirkpatrick et al}, 1983) is used to cluster a set
of exemplar shapes t1, ..., t into K partitions S1, ..., Sk, s.t. the objective function

=

E max chamfér(ti7 Pk;)
t; €Sk
k=1
is minimized. In this objective function, py is the “prototype” exemplar shape, which has the smallest maximum
Y
distance to other shapes in the cluster, and D pypp is the chamfer distancell. These prototype shapes are combined
into the next layer of the hierarchy, and so on. A partial view of the constructed three-level hierarchy is shown in

the left side of figure .

To use this off-line shape hierarchy in an on-line matching, Gavrila and Philomin start by extracting and thresh-

olding the edges in a given input image (using 8 discrete edge orientations) to obtain a binary “feature” image.

“The average distance between each feature point on one shape and the nearest feature point on the other shape (Borgefors, 1986).
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Figure 3.24: A partial human shape hierarchy, obtained by off-line clustering of human shape exemplars based on their
similarity, and the subsequent on-line shape matching using distance transform. Adapted from Enzweiler and Gavrila (2009).

Then the image’s distance transform (DT) is calculated (see figure for illustration) and the image is subdivided

into a coarse grid.

a) b) )

Figure 3.25: Distance transform: the original input image is shown in part a), the detected edges using a Canny| (1986) edge
detector are shown in part b), and the resulting distance transform is shown in part c).

The chamfer distance is calculated between the root shape of the hierarchy and the DT image at each point on
the coarse grid. If this distance is smaller than a pre-set threshold then the points neighbourhood is searched on
a finer-scale scale grid using chamfer distances to each of the child shapes. If the chamfer distance for any of the
child shapes is under a distance threshold for any of the points on the finer grid, the grid is further subdivided
and the shapes from the next level of the hierarchy are searched. This process is continued in a depth-first search
manner until leaf-level shapes from the hierarchy are matched or all positions on the coarse grid are exhausted, as

illustrated in figure .

This discrete human shape modelling approach has been later extended to a fully-probabilistic Bayesian framework
by Gavrila (2007). Other notable generative extensions include continuous shape modelling and inclusion of texture
information (see e.g. Munder et al| (2008)).

Parts-based detection Besides focusing on new types of classifiers/human descriptor features, some researchers
attempted to break down the problem of human detection into the problems of i) detecting individual body parts,
and i7) combining these detections into a single “human”/“non-human” prediction. Two main types of decomposi-
tions have been proposed: codebook representations, which represent humans as local codebook feature assemblies,

and semantically-motivated decompositions into anatomical body parts like head, arms, legs and so on.

An example of the former (codebook) approach is described by Leibe et al. (2005), in which the codebook is built
by applying a Difference-of-Gaussians (DoG) operator to extract the image patches with the size of at least 30,
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Step 1: coarse Step 2: coarse

Step 3: coarse matching Step 4: fine matching

Figure 3.26: Hierarchical shape matching using chamfer distance calculation with the distance transform image. Each of the
images show both the obtained distance transform (DT) image from figure and the normalized chamfer distance between
the DT image and the shape being matched. The first three steps illustrate the similarity search on a coarse grid/rough human
shape, which switches to a search on a finer-scale grid/shape when the similarity threshold is reached, as illustrated in the
step 4.

which are then clustered using an agglomerative scheme. The cluster centroids are used as codebook entries as local

object structure descriptors.

IMikolajczyk et all (|20041) describe an example of the latter approach, in which they use AdaBoost to train frontal

and profile head/face, frontal/profile upper body and leg detectors, using simple Laplacian/gradient-orientation
based features. Then, a joint likelihood of body part configurations is modelled using the knowledge about the
geometric relations between body parts.

Similar approaches have also been proposed in face detection. For example, IHeisele et all (|2001|) describe a parts-

based face detector which uses a two-level hierarchy of SVMs: the first level of this hierarchy contains 14 linear
SVM classifiers trained to detect individual face components, while the second level linear SVM acts as a geometrical
classifier.

Human skin colour modelling A number of early face detection approaches attempted to detect the faces by
considering human skin-like coloured patches of the input image. An example of such system is described by
() In this system the skin distribution model is approximated by bivariate Gaussian distribution,
fitted to a histogram of around 500 human skin images in CIE LUV colour space, with the luminance coordinate
discarded. The pixel is determined to be generated by the skin if its probability is greater than 3 under the fitted
Gaussian distribution. To detect the faces, the input image is segmented into similar colour patches and the patches
with less than 70% human skin colour pixels are rejected. The remaining patches are merged together into elliptical
shapes, which are further verified using geometric constraints (ratio of major to minor axes) and presence of darker

regions/holes in the ellipse. All shapes passing the verification are classified as a faces.

However, more recent face detection systems use the pixel’s colour similarity to skin colour mostly to complement

more sophisticated human/face descriptors. For example, a neural-network based face detection system by Feraun@l
() uses explicit color space thresholding in YUV color space to define the skin color region. Pixels
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outside this region are ignored, reducing the input image area which needs to be searched for faces using the neural
network.

A large number of different approaches have been proposed to model the skin colour distribution (e.g. see survey
by Kakumanu et al. (2007)). These approaches include explicit thresholding of the color space, modelling the skin
histograms using naive Bayes classifiers, fitting a single or a mixture of Gaussians, using feed-forward multilayer
neural networks, maximum entropy models, Bayesian networks and so on.

In the skin detection work by Jones and Rehg (2002) (further discussed in ), a particularly large dataset was
assembled for supervised skin model training. Their dataset contains 4,675 skin and 8,965 non-skin images, with
over 80 million skin and 860 million non-skin pixels in total.

Jones and Rehg compared the performance of histogram and Gaussian mixture models (GMMs) when trained on
such large-scale datasets. Interestingly, they discovered that histogram models outperform GMMs both in skin
detection accuracy and in computational cost, achieving state-of-the-art performance.

A sample image classification into skin/non-skin areas using a naive Bayesian classifier trained using Jones and Rehg

dataset is illustrated in figure .

Figure 3.27: Output from naive Bayesian skin classifier trained using Jones and Rehg’s (2002) dataset. Image a) shows the
Pr(skin|rgh)
Pr(—skin|rgh)

image filtered using this binary mask is shown in d).

original input, image b) shows this ratio is thresholded in image ¢) obtaining a binary mask, and the original

3.1.2  Survey of depth-based human body/head detection methods

Early depth-based human detection work was based on range inputs from stereo cameras, time-of-flight cameras
or scanning laser range finders. With the recent advent of affordable, structured-light based RGB-D cameras
like Microsoft Kinect (introduced in November 2010), ASUS Xtion Pro Live (introduced in September 2011)
or PrimeSense Carmine (introduced in December 2012), a number of RGB-D data based human/head detection
methods have been proposed. The most influential methods are summarized below, starting with the RGB-D
based human/head descriptor features used in discriminative classification frameworks.

3.1.2.1 Human/head descriptor features

Histogram of oriented depths/histogram of depth differences Spinello and Arrag (2011) and Wu et al} (201 I)H

present a three-dimensional extension to histogram of oriented gradients, named histogram of oriented depths

(HOD) and histogram of depth differences (HDD) respectively.

HOG/HDD features are computed from the metric depth image D,,,(x, y) which is obtained from the raw depth

image D(z,y) by calculating D, (x,y) = e 57> Where a, b are the intrinsic parameters of the RGB-D

a+bxD(

SBoth authors derived HOD/HDD features independently around the same time.
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Figure 3.28: Histogram of oriented depths (HOD)/histogram of depth differences (HDD) calculation. Adapted from @
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sensor estimated during the factory or later calibration. After this depth image conversion, the HOD/HDD values
are calculated from D,,(z,y) in a similar way to HOGs:

1. Detector’s window is subdivided into individual rectangular cells (similar to R-HOG),

2. Oriented depth gradients are calculated in each cell (as illustrated in figure ) and collected into single-

dimensional histograms,
3. Histograms are normalized within fixed-size blocks containing multiple cells.

The simplest classifier that uses HDD features is described by They train a SVM with a linear kernel on
4,637 depth images of humans, and 14,199 negative training images. For HDD feature calculation, they use 8 x 8
pixel size cells, and overlapping 2 x 2 cell blocks (with 8 pixel stride). Histogram is calculated in 9-bins, spaced
equally at 40° over the interval [0°,360°), and histograms within individual blocks are normalized using Lo-Hys
normalization measure. Then the histograms in individual cells are concatenated yielding a 3,780-dimensional SVM

feature vector for a 64 x 128 pixel size sliding window detector.

In the approach proposed by lSpinello and Arrasl, two linear SVMs are trained for HOG and HOD features indi-
vidually, using 1,030 RGB-D samples containing people and 5,000 negative training samples (randomly selected

from a background RGB-D dataset, guaranteed not to contain people). The posterior probability of human class
is approximated by fitting a sigmoid function to the decision functions of both SVMs using the method of

(2000).
Given the probabilities Pr(human|Ip), Pr(human|Ic) (obtained from HOD/HOG detectors respectively)
define the combined probability of human detection as

Pr(human|I) = k Pr(human|Ig) + (1 — k) Pr(buman|Ip),
where k is defined as the ratio of false negatives between the HOD and HOG detectors at the equal error rate point

in the validation set.

Local ternary and simplified local ternary patterns In an attempt to improve the local binary pattern discrim-

ination ability and to reduce their sensitivity to noise in uniform illumination areas of the image, [Tan and Triggs
() propose local ternary patterns (LTPs). Given a grayscale image I, the value of the LTP feature at image
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coordinates (x,y) is derived by concatenating ternary responses

L,
t(x/7y/) (:U, y) == 07
_]_’

1@, y') = I(z,y) + 9,
|I(:I:/7y/) - I(.’L’,y)’ < 57
I($/,y/) S I(J;ay) - 67

where (2/,y') ranges over (z,y) neighbours {(z &+ 1,y), (z,y £ 1),(z £ 1,y £ 1)} and § is the user specified
threshold. An example of a LTP calculation is given in figure .

Input image Pixel neighbourhood

371|217
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holding LTP value
168|218 |————
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5 =50

175

Figure 3.29: Local ternary pattern (LTP) feature calculation.

() further extend LTP features for the use of human detection in depth images. Their proposed
simplified local ternary patterns (SLTPs) combine LTPs and local first-order discrete derivatives in 8 spatial direc-
tions equally spaced between [0, 27). In particular, given the depth image D, the value of the SLTP centered at
coordinates (x,y) is defined as

SLTP(z, ) = (t2 ),

where ) )
L,  Ap>9, 1, D(+1y) >D(z—1y)+4,
lz =40, |A:c|<57 =10, \D(x+1,y)—D(33—1,y)]<5,
_]-7 A:CS_(Sa _17 D(:p—f-l,y)SD(a:—l,y)—é,
and .
1, Ay>4, . D(@,y+1)>D(z,y—1)+9,
ty=140, |A) <6 =40, |D(x,y+1)—D(z,y—1) <59,
-1, A, < -6, -1, D(z,y+1) <D(z,y—1)—0.

As in LTPs, § is a user specified threshold.

An illustration of SLTP features extracted from a depth image is shown in figure .

Figure 3.30: Simplified local ternary pattern (SLTP) feature calculation in depth images. Image a) shows the original depth
image (where depth is indicated by the pixel intensity); the SLTPs extracted from a) are shown in image b), where different
SLTPs are indicated by different colours. Note that the set of all possible SLTPs is much smaller than the set of all possible
LTPs (32 = 9 v.s. 3% = 6561 respectively). Taken from ()
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For the actual human detection, Yu et al.! (2012) use the sliding-window detector (with the scale factor of 1.1),
implemented using linear SVMs. To obtain the feature vector that describes the window, Yu et al| subdivide
the 64 x 128 pixel size window into 8 x 8 pixel non-overlapping blocks and assemble 9-bin single-dimensional
histograms of SLTP features in these blocks. The histograms are then concatenated, yielding the final feature
vector (this process is illustrated in figure ) The SVM is trained using 4,268 manually tagged training examples
containing humans in diverse postures and 59,508 negative training examples.

Since SLTP features are derived from regular LTP features, [Yu et al. (2012) also evaluate an analogue human
detector based on the LTPs (using 118 bins for LTP histograms). Based on their evaluation, the SLTP-based
approach yields better results (lower miss rates for every “false positive per window” data point).

Figure 3.31: SLTP feature vector calculation in Yu et al's (2012) approach. First the detector’s window is divided into non-
overlapping blocks, then the histograms of SLTP features in those blocks are calculated. Finally, the obtained histograms are
concatenated yielding the combined feature vector. Taken from Yu et al| (2012).

Local surface normals Hegger et al| (2012) propose another depth-based human descriptor, called the local
surface normals (LSN). As indicated by the name, this descriptor is calculated by fitting a plane to the k-nearest
neighbours of each point in the point cloud, and taking the normal vector of this plane (illustrated in figure )

These normal vectors are assembled into a LSN histogram, which serves as a final feature vector.

Holz et al| (2011) present a computationally-efficient way to calculate LSNs, based on the insight illustrated in
figure , viz. the fact that a surface normal vector to a plane can be calculated by taking the cross product of two
vectors on that plane (in Holz et als approach called the tangential vectors). Their method works as follows:

1. Given the input depth image D(x,y), the horizontal and vertical tangential vector maps are created by
calculating

Th(xay) = [x + 1,y,D($ + 17y)]T - [x - 1,y,D(l’ - 17y)]Tu
To(z,y) = [v,y + 1, D(z,y + 1)]" — [z,y — 1, D(z,y — 1)]".

2. For each of the Cartesian coordinates and each of the maps T}, T}, an integral image (as illustrated in figure

) is calculated:
Id7c(x7 y) = Z [Td(xla y/)] c?

' <z
y'<y
where d € {h,v} and ¢ € {z,y, z}.

3. For every pixel (z,y) in the depth image and any neighbourhood size k, the average tangential vectors in
horizontal and vertical directions (¢4 (x,y) and t,(z,y) respectively) can be calculated using the integral
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images of tangential vector maps as illustrated in figure . More specifically,

1

[ta(z,y)]e = 15 (Tae(e + 0.5k, y + 0.5k) — Lo(z — 0.5k, y + 0.5k)~

Iyc.(x+ 0.5k, y — 0.5k) + I .(x — 0.5k,y — 0.5k)),

for d € {h,v} and ¢ € {z,y, z}. Note, that this calculation takes constant time for each of the depth
points, since it requires 2 X 4 X 3 memory accesses.

4. Finally, the local surface normal vector is given by n(x, y) = t(x,y) x t,(z,y).

Figure 3.32: Local surface normal (LSN) feature calculation. Image a) shows the LSN feature calculated for a green point,
by taking a cross product of two tangent vectors obtained from the red points. Images b) and ¢) show a typical result of
annotating the point cloud with LSNs (top and side views respectively). Taken from Holz et al| (2011).

In Hegger et al.s (2013) approach, LSNs are used to obtain final human descriptors and to detect humans in the
depth images in the following way. First of all, the input point cloud from RGB-D sensor is cropped to the region
of interest (0.5 m < depth < 5.0m and 0.0 m < height < 2.0 m). Secondly, the points in the ROI are subsampled
using the voxell size of 3cm x 3em x 3 cm, and the LSNs are computed for all remaining points.

Afterwards, the remaining point cloud is segmented into horizontal slices (each of 25 cm height), and a basic
Euclidean clustering technique is applied within each slice, i.e. two points are added the same cluster if the Euclidean
distance between them is smaller than the threshold 6. (In their implementation, Hegger et al. set § = 2 x
cell size = 6 cm.) Finally, all LSNs from the same cluster are added into a single-dimensional histogram, and this
histogram, together with the cluster’s width and depth, is used as a feature vector.

Hegger et al. train AdaBoost, SVM and Random Forest (Breiman, 2001) discriminative classifiers based on these
histogram of LSN features, which are then used to classify unseen clusters into partial “human”/“non-human”
objects. These part-based classifications are then merged using Euclidean clustering with the threshold € set to
0 = 2 X slice height = 50 cm. Any connected component containing more than three clusters is considered as a
detected human.

3.1.2.2 Other approaches for human detection from depth data

Human detection using template matching/model fitting Xia et al) (2011) describes an approach in which
the humans are detected by first matching a two-dimensional head-and-shoulders template to the input depth
intensity image to obtain the candidate head regions, and then verifying those regions by fitting a three-dimensional

Volumetric pixel.
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a) b) B ¢)

Figure 3.33: Human detection steps in Xia et alfs (2011) method. Image a) shows the noise filtered depth image, image b)
shows the edges found using Canny edge detector, image ¢) shows the distance transform (DT) of this image, the areas that
satisfy the chamfer distance threshold between the DT image and the head-and-shoulders template (shown in figure )
are coloured in yellow in image d), the regions in the image that satisfy the hemisphere fitting threshold (i.e. detected head
centers) are shown in yellow in image e), and the human contours obtained using a region growing algorithm with detected
head centers as seeds are shown in figure f). Adapted from Xia et al| (2011).

hemisphere to the depth image. After obtaining the head regions, the contours of the whole human body are

extracted using a region growing methodd.

In particular, Xia et al’s (2011) method works as follows:

1.

Figure 3.34: “Head-and-shoulders” template used for can-
didate head detection in the distance transform image.
Taken from Xia et al| (2011).

Given the input depth array, the nearest neighbour interpolation method is used to fill the missing depth
data (due to occlusions, depth shadows, out-of-range objects, ezc). After removing the missing data, the
4 x 4 median filter is used to remove speckle and impulse noise.

. Canny edge detector (Canny, 1986) is used to find the edges in the filtered depth array as illustrated in part

b) of figure , and the multi-resolution edge image pyramid is generated from the original edge image
using the subsampling rate of 0.75.

. The distance transform (DT) for each of the edge images in the pyramid is calculated, as shown in part )

of figure .

. A binary head-and-shoulders template shown in figure is translated over the DT image pyramid; if the

chamfer distance between the template and the DT image at a given location is smaller than a user-specified

threshold, the location is marked as a candidate head center. This is illustrated in part d) of figure .

. Assuming that a human head is present at each candidate location, the radius of the head r is approximated

based on the candidate location’s depth. This hypothesis of head’s presence at a candidate location is then
verified by extracting a circular part of the depth image (centred at the candidate location and with the
approximated radius ), and calculating the square error between this circular part and a hemisphere model,
shown in figure . If the square error exceeds another user-specified threshold, the candidate location is
rejected. Image €) in figure shows the final head center predictions.
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Figure 3.35: Hemisphere model used for candidate head
verification. Taken from Xia et al} (2011)).

7Growing the region until the depth difference between the neighbouring image locations exceeds a threshold.



41

CHAPTER 3. SOLVING MAIN ROBOT PHOTOGRAPHER CHALLENGES WITH RGB-D DATA

6. A region growing algorithm is applied, using the detected head centres as seeds. This allows the whole body

contours to be extracted, as shown in part f) of figure )

Human detection through clustering Basso et al| (2012) proposes a clustering-based approach for people detec-

tion in RGB-D data, which works in the following way:

L.

First of all, the input point cloud is subsampled by dividing the input volume into three-dimensional grid
of equal sized cells, and representing each cell with its centroid to improve the run-time performance of the
algorithm, and to reduce the dependencies between the point cloud density and distance from the sensor (in
Basso et al.’s approach the cell size is set to 6 cm). The subsampling process is illustrated in parts a) and b)

of figure .

. Secondly, the points on the ground plane are removed from the point cloud. This is achieved by asking

the user to select three floor points in the RGB image, deriving the plane equation from these points
and removing the points in the cloud which are within the threshold distance from the plane (during the

initialization stage of the detector).

In the subsequent stages, the equation of the ground plane is automatically refined by detecting all the points
within a threshold from the hypothetical ground plane, and fitting a new plane using the least square distance
optimization. The point cloud after ground plane removal is shown in part ¢) of figure .

After removing the ground plane, the remaining points are clustered based on their Euclidean distance. In
particular, if the distance between two points is smaller than a pre-set threshold, they are placed into the

same cluster.

. The clusters are verified based on their geometrical properties: firstly, the clusters that contain less than 30

or more than 600 points are rejected, as shown in part d) of figure . Secondly, the clusters that have the
height smaller than 1.4 m or higher than 2.3 m are rejected. Similarly, the clusters that are further than

6.5 m away are rejected, since they would have too low point cloud density for reliable detection.

. The remaining clusters (as shown in part e) of figure ) are classified as being occluded or non-occluded,

based on the positions of their bounding boxes (illustrated in figure ) The human-likeness of non-
occluded clusters is then examined by classifying the RGB image area corresponding to the cluster’s bounding
box with a SVM trained using HOG features. The clusters which are classified by the SVM as “non-human”

are rejected, the remaining clusters are classified as human detections.

) oy 0 )

Figure 3.36: Human detection steps in Basso et all’s (2013) method. Image a) shows the original point cloud, image b) shows
the subsampled point cloud, image ¢) shows the point cloud after ground plane removal, image d) shows the clusters which
contain between 30 and 600 points, and image €) shows the bounding boxes of the clusters that satisfy the height and distance
constraints, overlaid over the original RGB input image. The clusters which are verified by the SVM trained on HOG features
are considered as final human detections. Adapted from Bassd (2011).
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Figure 3.37: Occlusion evaluation criteria in Basso et als (2013) method. Since a > /3, “Cluster 2” would be considered
occluded by “Cluster 17. Adapted from Basso (2011).

Multiple detector fusion In the people detection and tracking approach described by Choi et al| (2011), mul-
tiple RGB-D data based detectors are combined into a probabilistic sampling-based framework in the following
way.

Let I1¢ be the sequence of RGB-D images in time instants 1, ...,t, and Z; = {Z?, ..., ZF} be the set of human
head locations at time ¢, with each Z! given by a three-dimensional point (z,y, z). Using the sequential Bayes
formulation (Arulampalam et al|, 2002), the posterior probability Pr(Z;|I1~+) can be expressed as

Pr(L¢| Zy, Iit—1) Pr(Z | It —1)

Pr([t|let,1)
X PI‘(It‘Zt) PI‘(Zt’ILVt_l)

Pr(Zt|Ith) =

= Pr([t‘Zt)/ Pr(Z¢|Zi—1) Pr(Zy—1|I1~t—1)dZi—1 (Using Chapman-Kolmogorov eq.)

= H Pr([ﬂZé)/H Pr(ZﬂZg_l) Pr(Zi_1|I1~t—1)dZ—1. (Using target independence)
) [

The motion prior Pr(Z}|Z{_,) for each target is modelled as a Gaussian distribution centred over Z;_1 (to ensure
motion smoothness), together with two binomial probabilities representing the possibilities of new target’s appear-
ance, and the likelihood of targets persistence between time instants ¢ and ¢ — 1. The observation likelihood is

modelled using Pr(I}|Z}) o exp (z ) zj(zt\zg)) , where I;(-) is an individual detector log likelihood.
In Choi et al.’s approach the following individual detectors are used:

1. Upper body and full body HOG detectors ({zoc), as described earlier,

2. Viola-Jones face detector (), as described earlier,

3. Shape detector (Iggp), which is based on the Hamming distance between the two-dimensional binary “head-
and-shoulders” shape and thresholded depth image in the target area,

4. Skin detector (Ig,), which checks what proportion of the pixels in the target area are within a “skin colour”
region in HSV colour space,

5. Motion detector (Iyorion), which works by identifying the differences between the point clouds in time instants
t and t — 1, projecting those points back into the image, and calculating the proportion of moving pixels in
the target area.

Since the posterior at t — 1 time instant (Pr(Z;_1|I1~¢—1)) is not tractable to be calculated exactly, the resulting
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posterior probability at time ¢ is approximated as

N
Pr(ZelI1et) o [] Pr(1elZ]) " Pr(2:] 27,

7 r=1

where target position sets {Zt@1 }7{\]:1 are sampled from Pr(Z;_1|I1~¢—1) distribution using reversible-jump Monte
Carlo Markov Chain (R]-MCMC, Khan et al. (2004)) method (see Choi et al. for full details on the target proposal
Markov Chain). This approach also enables tracking-by-detection.

To start the detection/tracking process, the initial target location set Zy is approximated by removing the floor
plane from the initial point cloud (using the extrinsics of RGB-D sensor w.r.t. robot), clustering the remaining
points and using the highest points from each cluster as head location proposals. Only those proposals which are
between 1.3 and 2.3 metre distance from the ground, are used as actual initialization parameters.

3.2 Obstacle avoidance

An autonomous robot photographer, just like any other autonomous mobile robot, needs to be able to navigate
in its environment without colliding with any obstacles that it encounters. Traditional sensors used for this task
include laser range, ultrasound, infrared sensors, stereo or monocular cameras, or various combinations of any of
the above. Each of those sensors have their individual limitations, as summarized by in table @

Sensor Speed Cost  Power Density Accuracy Dimensions
Infrared sensor ring Fast Low Low Low Low 2
Ultrasound sensor ring ~ Fast  Medium  Low Low  Medium 2
Laser range finder Slow  High  High  High High 2
LIDAR Slow High  High  High High 3
Single camera Fast Low Low  High Low 3
Multiple cameras Fast Low Low  Low  Medium 3
RGB-D sensor Fast Low Low  High  Medium 3

Table 3.1: A comparison of different sensors used for obstacle detection. Extended from Peasley and Birchfield (2013).

Infrared or ultrasonic sensors arranged in a ring-like formation around the robot can provide planar range readings
at a low cost, but the acquired distance values are sparse and not very accurate. Laser range finders can produce
much more accurate and dense planar range readings, but they consume a large amount of power and cost thousands
of dollars. When combined with spinning mirror systems, laser range finders can also provide three dimensional
range scans (so-called LIDAR systems), but at the expense of decreased frame rate. In image-based obstacle avoid-
ance systems, the distances have to be inferred from the image data, requiring either multi-camera rigs or robot’s
movement (exploiting the motion parallax). This requires solving the computationally-intensive correspondence
problems (spatial or temporal), and typically produces only sparse, image noise sensitive distance measures.

The active-light based RGB-D sensors overcome most of these limitations, by providing real-time, dense, three
dimensional distance readings at affordable pricesE. Since these sensors can be used with both image- and depth-

based obstacle avoidance techniques, both types of methods are briefly surveyed below.

#Microsoft Kinect RGB-D sensor costs under one hundred dollars at a time of writing this thesis.
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3.2.1 Survey of image-based obstacle avoidance methods

A large number of image-based methods have been proposed for mobile robot navigation and obstacle avoidance
(e.g- see surveys by lBonin—Font et all (IZOOﬂ) or lDeSouza and Kakl (IZOOZ!)) Notable image-based approaches, which
do not rely on a prior map of the environment include the optical flow techniques, image qualitative characteristic

extraction methods and feature tracking based approaches (using the taxonomy of lBonin—Font et all), each of which

are described below.

Optical flow based methods Methods that rely on the optical flow try to detect the ground plane and the obstacles
above it from the motion of spatial features in a sequence of images.

An example method for obstacle detection based on optical flow is described by Fantos—Victor and Sandini (|1995|).

In their method they assume that the camera is facing the flat ground surface (on which the robot is moving) defined

I_Wfizio_%fi, where f,, fy are the camera’s horizontal and vertical focal lengths and
x Y
Z0, Yz, Yy are the parameters of the plane (the distance along the optical axis, and slant/tilt respectively). Then,

from the image brightness constancy equation for the optical flow (ug—i + U% = —%, where u ~ %, v R %

by the equation Z(z,y) =

they derive the normal flow equation for the planar surface in motion as

ol oI o0I oI oI 0I ol

@a w(‘?y’ ya@’ oz’ x%, y% = T

where the parameter vector 8 = [vg, vz, Vy, U, U, uy]T is estimated using a recursive least squares approach.

Using the obtained parameters 6, the equation of the ground plane can be recovered (up to a scale factor) by

calculating v, = —f}—g Jzand vy = —Z—z fy- (lSantos—Victor and Sandini also provide a way to estimate the equation

of the ground plane even if the intrinsic parameters of the camera f,, f, are not known.)

Finally, given the equation of the ground plane the obstacles can be detected by observing that for a translational
motion, the points on the ground surface should have the same flow vectors (after re-projecting the flow field onto
this estimated ground plane). Points above or below the ground should then have different magnitude or orientation

flow vectors, and thus can be identified as obstacles, as illustrated in figure .

c)

Figure 3.38: Optical flow-based obstacle detection: image a) shows the normal flow field, image b) shows the flow field
re-projected onto the ground plane, image ¢) shows the detected obstacles by looking for variations in otherwise constant flow

field. Adapted from ISantos—Victor and Sandini (|1995|).

In a more recent approach by lBraillon et all (|2006|), optical flow based obstacle detection is combined with stereo

obstacle detection. For obstacle detection from the stereo information, a calibrated two-camera rig is pointed
towards the ground plane, and the 3D point cloud obtained from the stereo image pairs is used to estimate the
ground plane equation by fitting a plane to the obtained point cloud using the Least Median Squares method
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(under the same flat ground assumption). Then the occupancy grid Cs(z, y) (containing obstacles and free space,
as illustrated in part ¢) of figure ) can be generated by thresholding the shortest distance between each point

in the obtained cloud and the estimated ground plane.

For the obstacle detection using optical flow (based on the image input from one of the cameras in the stereo
pair), an odometry-based approach is used. In particular, the theoretical optical flow is generated, which should be
observed on an estimated ground plane for a given linear and angular velocity of the robot. Then this generated
optical flow field is matched with the actual optical flow obtained between two consecutive image input frames I;
and Iy 1, calculating the image of squares of differences between the model and the observed flow Ia, as illustrated
in part b) of figure . The discrepancies between the observations and the model are assumed to have occurred
due to the obstacles in robot’s path.

Due to the fact that a single pixel in the image could have been generated by any three-dimensional real-world point
on the pixel’s projective line, image Ia actually generates a pyramid C,(z,y, 2) of occupied points in 3D space,
constructed by projecting each point in Ia onto the ground plane estimated from the stereo data. To collapse

this pyramid into the two dimensional occupancy grid Cy(z,y), use the following probabilistic

formulation: .
Co(z,y) = max <Pr(z)Co(a:,y, z)+ (1 — Pr(z))§> )

where Pr(z) represents a prior probability for an obstacle observed at height 2 to extend all the way to the ground
floor (constructed to decay with increasing height). After this projection, the occupancy map obtained from Ia is
shown in part d) of figure . Finally, the obtained occupancy maps from stereo and optical flow data are merged,

yielding the final occupancy map illustrated in part e) of figure .
d)

¢) e)

Figure 3.39: Obstacle detection from optical flow and stereo data in IBraillon et all’s (IZOOd) method. Image a) shows the

original input image for one of the cameras in the stereo pair, image b) shows the square of differences image o between the
odometry-based optical flow model and the actual optical flow obtained from two input frames (ignoring differences above the
horizon line), image ¢) shows the occupancy grid Cs(z,y) calculated from the point cloud obtained from the stereo input
data, image d) shows Ia projected and collapsed into the occupancy grid Cy(x, y) (as described in the text), and image €)
shows the merged occupancy grids Cs and C,. Adapted from éraillon et al] (2006).

Qualitative feature extraction In contrast to quantitative approaches, which try to calculate accurate numerical
data like distances to obstacles or their coordinates in the world plane, the qualitative approaches try to extract
characteristic features from the visual data in order to distinguish between free and occupied space.

An early example of such system is described by ILorigo et all (|1997|). Their approach is based on two assumptions:

that the ground plane is flat, and that the boundaries between the obstacles and the ground surface are visible in the
image. Then use detected edges and normalized RGB/HSV histograms to detect obstacle boundaries

in the following way.

First of all, the input image is scanned from the bottom towards the top in vertical slices, assembling edge/RG-
B/HSV feature histograms in each window. The edge feature histogram is calculated by simply assembling the
gradient magnitudes in a given window into a histogram. Similarly, the RGB/HSV-based feature histograms are
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built from the red and green colour intensities/hue and saturation values within the window. The lowest win-
dow in each slice is assumed to be obstacle free; then all higher windows which have sufficiently different feature
histograms are assumed to contain obstacles (as illustrated in figure )

== Bottom window
== Change window ~

== Bottom window
== Change window
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b) c)
Figure 3.40: Histogram-based obstacle detection in ’s (1997) method. Image a) shows the 64 x 64 pixel size

input for the algorithm together with two windows, the lowest of which is assumed to be obstacle free. Images b) and ¢)

show the 32-bin histograms of red and green pixel intensities under each window; the window would be declared to contain
obstacles if the cumulative difference between the histograms exceeds a pre-set threshold. Adapted from ILorigo et all (|l 997|).

Another qualitative feature extraction based method is described by |Maja et all (|200q). Their approach (based on

the same assumptions) is even simpler. First of all, an input grayscale image I is binarized using I(z,y) > p— o
threshold, where 4 is the arithmetic mean and o is the standard deviation of the intensities in the image. Then the
binarized image I(z, y) is scanned bottom-to-top using one pixel width vertical stripes, and the earliest occurrence
of the pixel’s intensity under the threshold is recorded for each stripe (i.e. H (x) = miny{y | I(z,y) = 0}).

The robot chooses the direction for navigation by calculating the largest free-space area in the binarized image, i.e.

. . . . . A I+6/2 / . )
the direction corresponding to the horizontal coordinate & = argmax, > "'~ pH («'), where ¢ is the robot’s
width in pixels.

Feature tracking approaches In the feature tracking approaches the robust elements of the image (lines, corners,
object outlines) are used to estimate the location of the ground plane in the input image from the homographies
between feature points.

An example obstacle avoidance method based on feature tracking is described by IPears and Bojiari (IZOO]D In

their approach, IHarris and Stephens{ (|1988|) corner detector is used to extract the corner points in the image. These

points are tracked for n frames using a Kalman filter, and a homography (plane-to-plane projection) H is calculated
between a limited set of corner points from frames 1 and n. The calculated homography H can then be used to
check if other corner points lie on the same plane; the homography that verifies the largest number of corner
associations is assumed to be mapping corner points between the ground planes in both frames. This allows the
corner points on the ground plane (verified using H) to be grouped together in patches, and the colour model of
the ground plane to be extracted from the image area under those patches. At this point, the whole image can be

classified into “ground plane”/“non ground plane” regions based on their colour, as illustrated in figure .
After segmenting the image into “ground plane”/“non ground plane” regions, apply a modified

potential field method (lBorenstein and Kored, |198ﬁ) to generate a fictional force that provides the direction and

speed instructions for the obstacle avoiding robot. In particular, they cast imaginary rays from the bottom center
of the image to the edges of the segmented ground plane region, and generate the force vectors in the opposite
directions (i.e. towards the bottom center of the image), which have the magnitudes inversely proportional to the
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Figure 3.41: Ground plane segmentation in Pears and Bojiarfs (2001) method, based on calculation of the homography that
relates ground planes in temporally separated frames. Image a) shows the extracted corner points on the ground plane grouped
into a patch, image b) shows the extracted ground plane region, based on its colour similarity to the colour of the patch in
image a). Adapted from [Pears and Bojian (2001).

length of the cast rays. Adding these force vectors together and including a forward-pointing driving force produces
the resulting direction vector.

A number of similar systems based on homography calculation from the feature points have also been proposed
(e.g- see the descriptions by Dao et al| (2003) or Zhou and Lj (2006)).

3.2.2 Survey of depth-based obstacle avoidance methods

Approaches to depth based obstacle avoidance in unstructured environment can be split into two categories, based
on their need for the structural assumption of the sensor’s position. Methods in the first category use the structural
knowledge about the sensor’s position/tilt angle (with respect to the rest of the robot) to detect the ground plane
in the input data. Methods that do not make this assumption detect the ground plane using only the input from
the RGB-D sensor.

An example of the latter approach (involving no prior structural knowledge about the sensor’s position) was proposed
by Nguyen (2012). In particular, Nguyen describes a method that detects the ground plane solely from the depth
input in the following way. First of all, the input point cloud is subsampled using the voxel filter (as described in
section ), and the points that are closer than 0.5 m or further than 1.4 m are eliminated.

The remaining points are used as inputs for the Random Sample Consensus (RANSAC, Fischler and Bolleg (1981))

b) ) d)

Figure 3.42: Obstacle detection process in the approach by Nguyen (2012). Image a) shows the original input RGB point
cloud, image b) shows the point cloud after the voxel filtering, and image ¢) shows the depth cloud after removing points with
distances > 1.4m or < 0.5 m. Image d) shows the final results after the ground plane detection using RANSAC algorithm
(shown in blue) and obstacle clustering based on their Euclidean distance (shown as green and red clusters). Adapted from
Nguyen (2012).
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algorithm, which is used to find the equation of the dominant plane (assumed to be the ground plane). Essentially,
this procedure works by sampling three non-collinear points from the remaining point cloud (which uniquely
define an equation of the plane), counting the number of points further than a threshold distance from the defined

plane and repeating the process if this number is too large (or for a fixed number of iterations).

When the RANSAC process terminates, the points belonging to the floor plane are discarded and the remaining
points are grouped using Euclidean clustering; the obtained clusters are returned as detected obstacles. This process

is illustrated in figure .

However, the majority of obstacle detection in RGB-D data methods use a priori knowledge about the position and

pitch of the sensor with respect to the robots base. Examples of such methods are presented by Mojtahedzade
(|2011|), IHolz et all (IZOI]J) and IPeasley and Birchﬁeld (|2013|), each of which is briefly described below.

In Mojtahedzadeh’s (2011) approach, the prior knowledge about the sensor’s position and pitch angle is exploited

by rotating and translating the input point cloud to the robot’s coordinate frame. Then all the points with the

heights outside the minimum and the maximum height boundaries of the robot are removed, while the remaining
points are projected into a 2D obstacle map, as illustrated in figure .

Figure 3.43: Obstacle detection process in ’s (2011) approach. Images a) and b) show the original RGB/depth
input images, image ¢) shows the obtained point cloud, and image d) shows the obstacle map, obtained by removing the points
outside the robot’s height (including the floor plane) and projecting the remaining points vertically into two dimensions. The
red circle in image d) shows the robot’s location. Adapted from IMojtahedzadeH (|2011|)

In the alternative EOIZ et all’s (2012) approach, the local surface normals are first calculated from the input point
cloud (as described in section Elg Then the calculated surface normals are transformed into the base coordinate

frame of the robot, using the knowledge about the sensor’s position w.r.. to the robot’s base.

Afterwards, the transformed points are clustered based on their (transformed) normals n = [ng, ny, n.|T by first

putting all the points with normals [, —x| < 4, |n, —y| < J, [n, — 2| < ¢ into the same cluster C and then

T,y,2)>
merging the neighbouring clusters (with similar normal orientations) until sufficiently large clusters are obtained.
The resulting clusters represent the sets of planes with similar surface orientation, but the planes themselves might

be spatially separated (e.g. see the red cluster in part b) of figure composed of multiple planes).

To mitigate this problem, the average normal vectors 7; are calculated for each cluster C, and the distances from
the origin to a plane defined by 72; and each point @; € C; are calculated. Clearly, this distance is the same for the
points on the same plane, hence the histograms of these distances are assembled and points from the same bin are
put into the same cluster. After obtaining the final clusters, the points in a horizontal plane n, ~ 1 with z ~ 0
are considered as obstacle-free points on the ground plane (shown in gray in part ¢) of figure )

In another example of obstacle detection from depth data, lPeasley and Birchﬁelq (|2013|) use an identical approach
to IMojtahedzadeH (|2011|) to obtain the initial obstacle map. However, to further improve the obstacle detection,

lPeasley and Birchﬁehi (|2013|) propose a way to overcome the limitations of Kinect in high specularity parts of the

scene.
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b) c)

Figure 3.44: Obstacle detection based on point cloud clustering in ’s (2012) approach. Image a) shows the original
RGB input, image b) shows three clusters (red, green and blue) obtained after clustering the input points based on their local
surface normals, and image ¢) shows the eight final plane clusters obtained after point re-clustering based on the plane-to-

origin distance, as explained in the text. The obtained obstacle-free ground plane segment is shown in gray. Adapted from
_

olz et al ()

In particular, given a pixel with an invalid depth reading, its neighbours in the depth image are examined. If any
of the neighbours lie on the floor plane (approximated as points with z < 5 cm) then that floor point is marked
as an obstacle in the 2D obstacle map (which semantically corresponds to placing an infinitely tall obstacle at that

floor point). This improvement is illustrated in figure .

a) ) ) d)

Figure 3.45: Improvements to reflective object detection by Kinect. Image a) shows the original depth input, image b) shows
the RBG input with the floor segment coloured in green. Notice that the table with metallic surface have no depth readings
in image a) (coloured in black). Image c¢) shows the obstacle map obtained by ignoring invalid depth readings (with the table
area marked as a red rectangle), while image d) shows the obstacle map obtained after specular surface marking as described

in text. Adapted from |Peasley and Birchﬁelc‘ (|2013|).

Another improvement proposed by lPeasley and Birchﬁeld| relates to the loss of depth data when the objects are too

close to the sensor (this can occur due to moving objects in the scene that suddenly appear in front of the sensor, or
when the robot turns away from one obstacle and starts facing another). This problem is mitigated by examining
the proportion of pixels in the input depth image that do not have valid depth readings. If this proportion exceeds

40% then the robot proposed by IPeasley and Birchﬁeld starts turning continuously in-place until the proportion

of valid pixels increases.

3.3 Proposed methods for the use in an autonomous robot photographer

The human detection/tracking and obstacle detection/avoidance methods for the use by an autonomous robot pho-
tographer are selected mostly based on their computational efhiciency. This condition is imposed by the simplicity
of the on-board computer in the robot (Intel Atom N2800 1.6 GHz CPU, 1 GB RAM, no dedicated GPU) and
power constraints (the use of complicated algorithms requires more power, which quicker drains the mobile robot’s

battery).
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The feasibility for a given method to be implemented within the project’s timeframe is also taken into consideration,
thereby rejecting methods that require training datasets which are not publicly available, or need training processes

which are time or computing resources intensive.

The use of these criteria is strengthened by the assumption that even simple RGB-D human/obstacle detection
algorithms should outperform similar image-based algorithms due to the richness of RGB-D data, hence by pro-
viding a highly modular and decoupled implementation of the robot’s control system the incorporation of more
sophisticated human detection algorithms could be left for the future research.

3.3.1 Proposed human subject detection method

With the above considerations in mind, a knowledge-based head detection algorithm by Garstka and Peters (2011) is
chosen and extended to cope with multiple people presence in the image. To improve the head detection results, two
skin detectors are implemented: a Bayesian skin detector by Jones and Rehg (2002), and an adaptive skin detector
based on a logistic regression classifier with a Gaussian kernel, and trained on an on-line skin model obtained from
the face regions detected using Viola and Jones (2001) detector. Finally, to exploit the spatial locality of human
heads over a sequence of frames, a depth-based extension of the continuously-adaptive mean-shift algorithm by
Bradski (1998) is proposed. Each of these methods are further explained below, starting with the head localization
algorithm of Garstka and Peters (2011).

3.3.1.1 Head localization from depth images using Garstka and Peters (2011) approach

Garstka and Peterg (2011) describe a fast, knowledge-based human head localizationl method. It consists of three
main steps: ) depth shadow elimination, 4¢) depth image smoothing, and i7i) head localization through local
minima detection and verification of surrounding geometrical features, based on prior knowledge about human

head sizes. These steps are described in more detail below.

Depth shadow elimination Due to the fact that IR projector is placed 2.5 cm to the right of the IR camera in
Kinect sensor, the depth shadows (places visible by IR camera which do not have a projected IR pattern) always

appear on the left side of a convex object (as illustrated in figure )

I Obcc: B
. Object A
Depth \
shadow
IR camera IR projector

Kinect sensor

Figure 3.46: Kinect depth shadows for the convex objects. Light blue polygon shows the area visible from the IR camera’s
point of view, light red polygon shows the projected IR pattern. Blue lines indicate the areas on the object surfaces visible by
the IR camera, red lines indicate the areas which have a projected IR pattern. Note that depth shadows always appear on the
left side of convex objects. Adapted from Zabarauskag (2012).

?Borrowing the wording from \Yang et al| (2002), head localization task can be defined as the head detection task under the assumption
that an input image contains exactly one head. In other words, it is the task of determining the location of exactly one viewer’s head in the
input image.
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Since human heads are indeed convex, parstka and Petersi propose to eliminate the depth shadows by scanning the

image one horizontal line at a time, top-to-bottom, and replacing every unknown depth value with the last known

one. This process is illustrated in part ¢) of figure .

Depth image smoothing Depth images can contain noise due to inaccurate measure of disparities in the correla-
tion algorithm, external IR radiation (e.g. sunlight), high specularity object surfaces and so on. Since the subsequent
detection step will involve treating every local horizontal minimum point as a potential point on a vertical head axis,

it is highly prone to noise. To mitigate this problem, parstka and Petersl propose to use the integral image repre-

sentation for fast smoothing. In particular, given the integral image I and the smoothing radius 7, the smoothed
depth value I, (z,y) can be calculated using

I(a:—l—r,y—i—r)—f(ac—r,y—i—r)—I(a:—i—r,y—r)—i—f(a:—r,y—r)
(2r+1)? '

(3.6)

I (z,y) =

The input depth images blurred using radii € {2,4, 8} are shown in figure .

a) Input depth image b)r=2

Figure 3.47: Depth image blurring using integral image approach.

Head localization In order to efficiently localize the head, F}arstka and Petersi start by making an assumption that
the adult head has an approximate size of 20 cm X 15 cm % 25 cm (D x W x H). Since the exact head’s orientation
is unclear, parstka and Petersl assume the inner depth and width bound of 10 cm and the outer depth and width
bound of 25 cm.

Given an object with width w and height h, at a distance d from the Kinect sensor, the width and height that the
object occupies on the screen (py,(d) and py, (d) respectively) can be calculated using

(3.7)

(m(d),ph(d)):( WX Tw X7 )

dx2tan%’dx2tan%

where (fu, fr) are the horizontal/vertical fields-of-view (FOV) of the depth camera, and 7, X 7}, is the resolution

of the depth image. parstka and Petersl empirically measure a horizontal FOV of 61.7°, which nearly corresponds
to the PrimeSense PS1080 SoC reference design 1.081, which states 58° horizontal and 45° vertical FOVs.

Using equation @, the inner and outer bound pixel distances at distance d (in a VGA resolution depth image) can
be expressed as

~ 10em x 640px 5,773

bz d - ) ~ 9
(d) dx2tan% d px
25cm x 640px 14,432
bo(d) = — =~
(d) dx2tan% d px
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d) €)

Figure 3.48: Head detection steps in Garstka and Peters' (2011) method. Images a) and b) show the original RGB/depth
images obtained from Kinect sensor, with missing depth data annotated in purple, image ¢) shows the depth image after
filtering depth shadows, image d) shows the result of depth blurring using the blur filter size » = 4, and images €),f)
illustrate the detected head’s inner bounds (shown in red), outer bounds (shown in blue) and the vertical head axis (shown in
white).

Given these inner/outer bound pixel distances, the head location can be determined in the following way:
1. The depth image is scanned top-to-bottom, one horizontal line at a time.

2. For each horizontal line y, a local minimum pixel  is found such that the depth differences between this
pixel and the depth values within the inner bounds are smaller than 10 ¢, and the depth differences between
this pixel and the depth values at the outer bounds are larger than 20 cm.

More formally, x has to satisfy the following conditions:

d(z,y) < d(x +1,y),

VA, € {1, b’(dgﬂ} rd(z £ Ay, y) —d(z,y) < 10cm, (3.8)
d(z £ bo(d(zﬂ,y) —d(z,y) > 20cm.

3. In order to obtain accurate horizontal boundaries for the candidate head, the positions where the depth
difference exceeds 20 cm are found on each side of x (named the left/right lateral gradients of = and denoted

x; and z, respectively).
In particular, x; and x, must satisfy the following constraints:
Vg € {lar} : d(mgay) - d(l’,y) < 20cm,

d(z; —1,y) — d(x,y) > 20 cm, (3.9)
d(z, + 1,y) — d(x,y) > 20 cm.
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T (y)+zr(y)
2

Then the arithmetic mean of left and right lateral gradients Z(y) = is stored as a potential point

on the vertical head axis (illustrated in parts €) and f) of figure )

4. Since Garstka and Peters assume the head height of at least 25 cm, a number of subsequent lines must satisfy
the constraints from equation (@) The average depth of the points found in the last n lines can be calculated
as

|
—

n

a:% > d(aty = i)y — )

Il
=)

Then the required number of lines satisfying the equation (@) can be obtained from equation (@) as

nmax -

25,om x 480 px 14,485
Ex?tan% Tod

5. If at least my,y lines satisfying the equation (@) are found while scanning the horizontal line y, then the
head detection is triggered and the position of the head center (Z, §) is returned, where

1 et n
(53;?;): < Z f(y_i)a Y- mdx) :

Nmax =5 2

3.3.1.2 Multiple people detection using an extension of Garstka and Peters (2011) method

Since a photographer robot needs to be able to detect multiple people in its environment at the same time, an
extension to Garstka and Peters’ (2011) method is proposed to cope with multiple people detection.

The extended method still scans through a blurred and depth-shadow-filtered depth image one horizontal line at
a time, from top to bottom. However, instead of keeping a single potential vertical head axis, a set of vertical head
axes {H1, ..., Hy} is constructed. Each head axis is represented by H; = (Ei, (X, Y)l-), where d; is the average
candidate head distance from the sensor, and (z,y) € (X,Y); are the image points on the vertical axis.

When a new arithmetic mean of left and right lateral gradients T(y) is calculated (step 3 of the original algorithm),
the extended method searches for the head axis Hj s.z. the last added point (z/,y") € (X,Y); is within 5cm
distance from the point (7, y).

More specifically, let wq(p) and hg(p) be the width and height in centimetres of an object which occupies p pixels
in the image while being at a distance d from the sensor. Inverting the equation (@), these measures can be
expressed as

(3.10)

pxd><2tanf7w pxdx?tan%
Tw Th '

(wa(p), ha(p)) = ( ,

Furthermore, let d be the depth of pixel (Z(y),y). Then the 5cm distance constraint described above can be

expressed as

2 2

\/ (wd(f(y)) —uy (x’)) + (hd(y) ~hy (y’)) +(d—d;)° < 5om. (3.11)

If the pixel (Z(y), y) satisfies the above constraint then (X, Y"); is updated by adding the point (Z(y),y), and the

average head distance d; is recalculated.
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A vertical head axis H; is classified as a detected head if it is closer than 5 meters, is between 20 cm and 30 cm
long, and is rotated by less than 35° from Oy axis in the Cartesian coordinate system. These constraints can be
expressed using simple geometry in the manner similar to the above.

A few examples of multiple head detection using this method are shown in figure .

Figure 3.49: Multiple head detection examples using the proposed extension of ’ method.

3.3.1.3 RGB data based improvements to human subject detection

The head detection technique introduced above is very simple, and while it does not produce many false negatives
(under the upright human orientation assumption), it often classifies other objects as human heads. In order to
reduce the false positive count without too severely compromising the detection rate, a technique with orthogonal
failure modes is required.

The most natural way of detecting human subjects from the RGB data would be to perform human/face detection.
However, humans might not be fully visible in Kinect’s field of view, or might not be facing the camera. Since the
event photographer robot should be capable of taking both frontal and profile face pictures, multiple face detector
cascades would likely have to be used, using a significant amount of computational complexity budget for a mobile
robot.

To keep the complexity low and still reduce the false positive rate of the extended head detection method, skin
detection in RGB image is used. More specifically, after detecting a candidate head region using the method
described above, the amount of skin-colour pixels in the corresponding RGB image region is examined. If the area
occupied by the skin is under a pre-set threshold, the candidate head is rejected.

To perform this task, two skin detection methods are explored: a Bayesian classifier trained off-line on a very large
scale skin/non-skin image dataset, and an on-line skin detector trained using skin histograms obtained from a

small set of face detections using IViola and ]onesi (|2001|) detector. Both of these methods are briefly explained

below.

Passive skin-detection using a Bayesian classifier As described by |Fleck et all (|199€1), the human skin colour

is tightly clustered in the colour space, since the human skin hues have a very restricted range (the hue is mostly
induced by yellow/brown colour melanin and red colour hemoglobin in blood), and is not very strongly saturated.
This indicates that even simple classifiers can achieve good performance. This is verified empirically in the anal-
ysis performed by ]]ones and Rehé (|2004), where they have discovered that a histogram-based Bayesian classifier

outperforms a more sophisticated Gaussian Mixtures Model (GMM) when trained on a very large scale dataset
(containing nearly a billion pixels, each hand-labelled as skin or non-skin).
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Because of these reasons, a histogram-based Bayesian classifier similar to Jones and Rehg’s is implemented and
trained for the use in a robot photographer. Since the skin colour classification performance is largely independent
of the colour space used as described by Phung et al. (2005)@, RGB histograms are used for the classifier’s training
since the colour input from the Kinect sensor (used for the robot) is provided in the RGB format, thereby avoiding
unnecessary format conversions.

Given an input pixel with specific R = r, G = g and B = b values (in the equations below shortened as 7gb), the
Bayesian classifier models the probabilities Pr(skin|rgh) and Pr(—skin|rgh) as

Pr(skin|rgh) = Pr(rgblliﬁj;;r(skin) |
Pr(-ubirgh) = S,

which allows the posterior ratio to be expressed as

Pr(skin|rgh)  Pr(rgb|skin)  Pr(skin) (3.12)
Pr(—skin|rgh) ~ Pr(rgb|—skin) Pr(—skin) '

posterior ratio likelihood ratio prior ratio

Then, the likelihood ratio can be used to classify a given rgb pixel in a probabilistically-sound framework (i.e. based
on Pr(skin|rgb) >7 Pr(—skin|rgb)) using the following observation:
Pr(skin|rgb) > Pr(—skin|rgh) <

Pr(skin|rgb)
Pr(—skin|rgh) =le
Pr(rgb|skin) Pr(skin)
Pr(rgb|—skin) Pr(—skin) 2le
Pr(rgb|skin)
Pr(rgb|—skin) —

where § = P;,E(ﬁsgzi’)l). Another way of interpreting 6 is as a threshold that controls the trade-off between detec-

tion/misclassification rates which can either be set empirically or learned from a held-out set.

The maximum likelihood (MLE) estimates for the class-conditional likelihood probabilities Pr(rgb|skin) and
Pr(rgb|—skin) can be obtained from a supervised training set by creating skin and non-skin histograms from all
tagged RGB pixels (H, and H,, respectively) and calculating

Hy[r,g,b]
| H|

Hy[r, g,b]

Pr(rob|skin) = )
(gisin s

Pr(rgb|—skin) =

where H]r, g, b] is the pixel count in bin R = r, G = g, B = b of the histogram H, and |H]| is the total pixel
count in histogram H.

An example colour input processed using this approach is shown in figure .

10Phung et al] tested a histogram-based Bayesian classifier (similar to the one described in this section) using histograms obtained from
RGB, HSV, YCbCr, and CIE-Lab colour spaces, and found that the performance of all classifiers was almost the same in all colour spaces.
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Figure 3.50: Sample output produced by the histogram-based Bayesian skin classifier (Jones and Rehg, 2002). Image a) shows
the original input, image b) shows % where pixel’s probability corresponds to its intensity, and image ¢ shows the

binary skin map obtained after thresholding this probability ratio.

Active skin-detection using a kernel logistic regression classifier with Viola-Jones face detector Another pro-
posed approach for skin detection by an event photographer robot involves building a new skin model for each of
the new environments in which the robot is placed.

To achieve this, n faces are detected over a sequence of frames using the frontal and profile face detectors by Viola
and Jones (2001), described in section . For each of the detected face rectangles, a binary mask is applied to
segment the image into face oval/background regions, and the pixel hue histograms are assembled in each of the
regions, as illustrated in figure . Then these histograms are used as feature vectors in kernel logistic regression
(KLR) classifier training.

b) c)

Figure 3.51: Feature extraction process for the skin kernel logistic regression classifier. Image a) shows the original RGB
input, together with the face rectangle detected using Viola and Jonegs (2001) method. Image b) shows the skin region
obtained by rescaling the face rectangle to 95% of its size, setting the width/height ratio to 2:3 and fitting an ellipse to the
resulting rectangle. Image ¢) shows the background region obtained by rescaling the face rectangle to 178% of its size and
subtracting from it a face rectangle expanded to 133% of the initial size.

After the training, the depth-based head detections can be verified by applying the same oval binary mask to the
detected head rectangle, constructing a hue histogram h from the face region and applying the KLR classifier to
obtain Pr(skin|h). The overall detection is then classified as a head if an only if Pr(skin|h) > 6, where 0 is a
user-specified threshold.

Given a normalized hue histogram h, the logistic regression classifier with the kernel K (z,y) = ¢(x)T ¢(y)
models the probability that this histogram belongs to a skin class as Pr(skin|h) = o(w? ¢(h)), where w is
the weight vector, o is a logistic sigmoid function and ¢ is a map from the input space to the feature space.
The complementary probability Pr(—skin|h) can be obtained by calculating Pr(—skin|h) = 1 — Pr(skinlh) =
o (—w g(h))
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Having obtained n training examples D = {(h1,t1), ..., (Fn,tn)} (where t; = 1 if the histogram is of the skin
region, and ¢; = 0 otherwise), the maximum-a-posteriori (MAP) estimate of the weight vector w can be obtained

in the following way:

wpmap = arg max Pr(w|D)
w

= arg max Pr(D|w) Pr(w).

w
Let L(w) = — log(Pr(D|w) Pr(w)), then equivalently wyap = argmin, £(w). Modelling the weight prior

Pr(w) by a zero-mean Gaussian with variance A\? and assuming the independence between individual training

examples allows £(w) to be rewritten as

L(w) = — log KH Pr(t,-yhi)> exp (‘“2";;")]

= =Y [titogo(w” o(hi)) + (1~ ) og(L — 0w 6(h.))] +

’UJT’lU

2)2

By the Representer Theorem (e.g. see Schilkopf et al! (2001)), the weight vector can be expressed as a linear com-
bination of training examples projected into the feature space, i.e. w = >, a;¢(h;), for some a = (ay, ..., ),
hence the negative log posterior of the weights £(w) can be rewritten as
> aioK(hishy)
L(a) =— Z:[tZ logo(3_; ajK (hj, hi)) + (1 —t;) log(l — o (3 i K (hy, b)) + =55 2.

1

(3.13)

This quantity can be minimized using the resilient backpropagation (iRprop™, Riedmiller (1994)) variant of the
gradient descent algorithm, fully described in the implementation section (see listing )

3.3.1.4 Computational performance improvements using a modification of the continuously adaptive mean-
shift tracker

To further reduce the computational complexity requirements of head/skin detection methods described above, a
depth-data based extension of the continuously adaptive mean-shift tracking algorithm (CAMShift, Bradski (1998))
is employed to exploit the spatial locality of humans over a sequence of frames.

The original CAMShift algorithm is largely based on the mean shifi algorithm by Fukunaga and Hostetler (1975),
which provides a non-parametric way to climb the gradient of a given probability distribution to find the nearest
mode. In the extension by Bradski, the mode of the distribution and the size of search window are re-approximated
at each input frame, using the zeroth and first spatial horizontal/vertical moments of the probability distribution.
This allows the probability distribution of the tracked object’s location to be recomputed for each frame.

As shown in line |12 in algorithm , the new search window location is obtained by calculating the center of
probability mass under the old search window at each iteration of the algorithm. Similarly, the size of the new
search window (line ) is obtained by observing that the zeroth moment approximates the area of the distribution
under the search window, hence by assuming a rectangular search window, a square root of the zeroth moment
approximates the length of a side of the window. The multiplicative constant (obtained empirically) ensures the
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Algorithm 3.3.1.1 A variant of the continuously-adaptive mean shift algorithm. Given the initial location of the
search window (z,y), the initial window’s size w x h and the convergence threshold 6, it positions the search
window at the nearest dominant mode of the probability distribution P.

CONTINUOUSLY-ADAPTIVE-MEAN-SHIFT( P, (z,y),w X h, )

1/ Initialize the search window center
2 (zL,y,) + (z,9)

3 repeat
4 for one or more iterations
5 (Tes Ye) < (SL‘/C, y;)
6 / Find the 0" moment of P under the search window
Moo Z P(xc+z,y. +v)
|z|<w/2
ly|<h/2
/| Find the I'* horizontal and vertical spatial moments
Mg Z zP(zc+ x,yc. +y)
|z|<w/2
ly|<h/2
10 Moy + Z yP(xc+x7yc+y)
|z|<w/2
ly|<h/2
11 /' Update the object’s center position
12 (wsf) = (M. 312)
13 / Update the search window size
14 W 4— 24/ MO,O
15 h <+ %w

16  until JaccarRD-CoEFFICIENT(old search window, new search window) < 6

sufficient expansion of the search window for CAMShift algorithm to be able to track the whole object, instead of
“locking” onto the disconnected parts of the probability distribution.

Finally, the Jaccard coefficient is used as a method’s convergence condition. Jaccard’s coefhicient measures the overlap

between two rectangles A and B, and is defined as the ratio between the areas of their intersection and union, i.e.

ANB
JaccarD-CoEFFICIENT(A, B) = { AB B{.

While the original CAMShift algorithm by Bradski (1998) uses the probability distribution obtained from the
colour hue distribution in the image, in this project it is adapted to use the depth information. In particular, the
constraints in equation (@) that Garstka and Peters (2011) use to reject such local horizontal minima which could

not possibly lie on the vertical head axis, are used to define the following degenerate head probability:

1, if constraints in equation (3.8) are satisfied for pixel (z,y),

Pr(head |(x,y)) = { (3.14)

0, otherwise.

An example of this method in action is shown in figure , while the interaction between the detection/tracking

components is given in detail in section .
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Figure 3.52: Head tracking with extended CAMShift algorithm using depth information. Images a)—d) show the tracked head
rectangle (coloured in yellow) overlaid over the input RGB images in a sequence of frames. Pixels with non-zero probability
in the head distribution from equation @ are rendered in white.

3.3.2 Proposed obstacle avoidance method

The proposed obstacle avoidance approach for the event robot photographer is based on the work done by
() It was chosen due to its suitability for the random navigation mode (which the event photographer uses to
wander around in the environment) and its computational efficiency.

This approach consists of three main steps: @) the prior knowledge about the sensor’s position and pitch angle is
used to translate and rotate the point cloud s.z. the floor plane is described by the equation z ~ 0 (under the flat
floor assumption), i) the region of interest in front of the robot is cropped out from the transformed point cloud,
and 4i7) the robot is navigated away from the centroid of remaining points, if there are any. These steps, together
with the proposed extensions, are detailed below.

Let D = {x;}i=1,..n be the depth point cloud obtained from the RGB-D sensor, where each x; =
[iUi,yi,Zi]T~

As a preprocessing step, this depth point cloud is subsampled using a voxel grid filter, to reduce the sensor’s noise,
and therefore the computational complexity of the subsequent steps, in the following way. Let 6 be the length of
a single cell’s side in the subsampling grid. Then the subsampled point cloud D is composed of the centroids of

w H D
T € {1,,7},y S {1,...,3},2 S {1,,3}} s

where W x H x D is the size of the input point cloud, and C;, , is the set of points in a cell (z,y, 2), ie.
Coyy:={Ti €D||lzi — 2| <3, lyi —y| < S|z — 2| < § ).

the points in J-sized cells, i.e.

D=l 3
= —_— xTr
|C‘,I’l7y?z
:EGCz,y,z

The input point cloud before and after the voxel grid filtering with different cell sizes d is shown in figure .

After filtering the point cloud, the subsampled cloud D is rotated and translated using the knowledge about the
RGB-D sensor’s position and tilt angle s.z. the floor plane is described by equation z ~ 0. In ’s approach

the Kinect sensor is aligned parallel to the ground plane, hence only translation is necessary.

In the modified approach, the accelerometer embedded into Kinect sensor is used to measure the angle 6 between
the ground plane and the optical axis of the Kinect sensor at each input depth frame. The translation vector
t = [ty,ty,t.])7 that describes the sensor’s position w.r.. robot’s base is measured empirically. Define the rotation



3.3. PROPOSED METHODS FOR THE USE IN AN AUTONOMOUS ROBOT PHOTOGRAPHER 60

a) RGB input b) Point cloud c)d=2cm d) 0 =5cm
(307,200 points) (36,491 points) (9, 860 points)

Figure 3.53: Point cloud processing steps in the proposed obstacle detection method. Image a) shows the original RGB-D
point cloud, obtained from the Kinect sensor. Images b) — d) show the same point cloud filtered using the voxel grid filter
with varying cell sizes d.

matrix Ry around z-axis (in Kinect’s coordinate system) as

1 0 0
Ry=| 0 cos(#) —sin(0)
0 sin(f) cos(0)

Consider the point representation in homogeneous coordinates (i.e. let every point @; = [z;/w;, yi/wi, z; /w;) T

in D be represented as x, = [z, v, %, w;]T). Then the transformation P that aligns the floor plane with the

R
P= o |t :
000 |1
i.e. the transformed point cloud D; = {Pz; | ; € D}. This transformation is illustrated in part ¢) of figure
551

The next step in the obstacle detection process described by Boucher is to filter the transformed point cloud Dy to

plane z = 0 can be represented as

extract the region of interest immediately in front of the robot. Presence of points in this region would indicate
obstacles. This is achieved by using further prior knowledge about the robot’s size. Let w X h be the robot’s width
and height respectively. Furthermore, let d be the depth of the ROI, which determines how far ahead of the robot
the obstacle has to be, for the robot to start avoiding it. Then the region of interest Doy can be obtained by
calculating

'DRO]:{:I}Z‘E'Dt ’ |QZ,’ < %,O<yi<h,zi<d} .

The resulting point cloud is illustrated in part d) of figure .

In order to avoid the obstacles in the extracted region of interest, the turn direction for the robot is generated based
on the horizontal location of the centroid of Dgor. More specifically, define the centroid of ROI Troy as

1

- i, if [Drot| > 0.
|Drorl Z i» i [Droi

z;,€Dror

TRor =

Then the presence of an obstacle is determined by the condition |Dgo;| > 0. If this condition is satisfied then
the turn direction for the robot is generated by examining the sign of the xzor coordinate of the centroid ror =
[zror, Yror zron) T+ if xror < O then the obstacle lies on the left side of the robot hence a right turn signal is
generated, and vice versa.
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c) d)

Figure 3.54: Point cloud processing steps in the proposed obstacle detection method. Image a) shows the original RGB-D
point cloud, obtained from the Kinect sensor. Image b) shows the same point cloud filtered using the voxel grid filter with
d = 3 cm. Image c) shows the point cloud transformed by aligning the ground plane with the plane z = 0. Image d) shows
the obtained region-of-interest point cloud; points in this region are considered as obstacles.

To reduce the impact of sensor noise (arising due to external IR radiation, reflective object surfaces, inaccurate
disparity measurements and so on), Boucher proposes the temporal smoothing of the ROI size | Dgoy| by calculating

a moving average in the following way.

Let | D% ;| be the size of the ROI at time ¢. Then the obstacle presence criterion smoothed using a moving-average
can be expressed as

1 n—1 '
~> _IDkorl > 0.
1=0

To prevent the robot from getting stuck in an oscillating loop when facing a large obstacle, it is prohibited from
changing the direction of the turn once it has started turning, as suggested by Boucher. In other words, after the
robot starts to turn to avoid a detected obstacle, it must continue turning in the same direction until the path in
front of it clears sufficiently to be able to drive forward.

Also, to avoid turning into another obstacle, which could cause the depth data to disappear making the robot think
that there is nothing but empty space ahead (when in reality it is standing right in front of the obstacle) the second
improvement proposed by Peasley and Birchfield (2013) is used. Namely, if the unfiltered point cloud D covers
less than m% of the depth image, then it is assumed that the robot is facing a nearby large obstacle, and a turn
direction is issued.
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The overall obstacle detection and avoidance process is summarized in an UML activity diagram in figure , and
its source code is provided in appendix @

RGB point cloud Set proposed direction to
input from the sensor the current direction

[Current directiof is not "forward"]

[Point cloud occupies less
than m% of the depth image]
[Current directjon is "forward"]

[Point cloud pccupies more

than m% of the depth image] Set proposed direction to
"turn right"

Reduce the point
cloud density

Transform the point
cloud to have the
ground plane at z = 0.

Crop the point cloud to
ROI ahead of the robot

[Average ROI's size over [ Set proposed direction to
last n frames is equal to 0] K "forward"
[Average RQI's size over
last n frames is above 0]

Find the centroid
of the ROIL
[Centroid lies on the left] [ Set proposed direction to
K "turn right"

[Centroid lie on the right]

Set proposed direction to
"turn left"

@

Figure 3.55: A high-level UML activity diagram describing the proposed obstacle detection and avoidance method used by
an autonomous event photographer robot.

The following chapter describes the development details of these (and other@) methods, including the hardware
components and software architecture of the implemented autonomous robot photographer.

! Automatic photograph composition and framing, extrinsic and intrinsic calibration of Kinect and photographic cameras, robot's state
externalization and so on.



Chapter 4

Development of “Luke”: an Event Photographer Robot

This chapter describes a detailed implementation of an autonomous robot photographer, named Luke. First, the bardware
components of the developed robot are discussed. Secondly, a high-level software design of the system is presented. Lastly, a

detailed description of individual software components is provided.

4.1 Physical structure

Luke (figure @) is built on iClebo Kobuki’s base, which is able to carry up to 4 kg payload, has an operating
time of around 3 hours and is able to move at the maximum translational and rotational velocities of 65 cm/s and
180 °/s respectively. Furthermore, Kobuki’s base contains three bumpers (left, center and right) which can be used
to provide alternatives to vision-based obstacle avoidance. This base is integrated into the Turtlebot 2 open robotics

platform using a kit containing laser-cut mounting plates and aluminium standofts.

For its vision, Luke uses a Microsoft Kinect RGB-D sensor, which provides both the depth and colour inputs. In
order to obtain the depth measures in the scene, Kinect projects a structured light pattern using an embedded IR
projector, and captures this pattern using a monochrome CMOS sensor. The distances to objects in the scene are
calculated using the triangulation of the IR pattern displacements. The depth-sensing video stream provides VGA
resolution (640 x 480 pixel size) images at around 30 frames per second rate. Each depth reading is represented
as a 10-bit value (with a total of 794 possible values), with a hyperbolic relation between these values and the
metric depths in the scene. For colour input Kinect uses a RGB camera, which is similarly capable of providing
VGA resolution colour images at 30 FPS rate. The sensor has a combined 57° horizontal and 43° vertical field-of-

view.

Kinect is attached to the Turtlebot’s base at a 10° angle, to be able to track upright standing humans at 1.5 m-2.0 m
distance. Since this limits low obstacle detection abilities, the linear velocity of the robot is limited to 10 m/s
and the bumpers on Kobuki’s base are used to provide graceful recovery in the case of collision with a low-lying
obstacle.

To take the photographic pictures Luke uses a simple point-and-shoot Nikon COOLPIX S3100 camera, which has
a maximum resolution of 14 megapixels, a built-in flash, and supports automatic exposure/ISO sensitivity/white
balance settings. This camera is mounted on a lightweight, aluminium Kénig KN-TRIPOD21 tripod (weighing
645 grams), which is attached to the top mounting plate of the robot. The overall size of the robot is approximately
34cm x 135ecm x 35ecm (W x H x D).

For Luke’s state externalization, a HTC HD7 smartphone with a 4.3 inch LCD display is mounted onto the robot.
The display has a resolution of 480 x 800 pixels, and is capable of reproducing 24-bit colours. It is used to display
Luke’s state messages and to show the QR (Quick Response) codes containing the URLs of the pictures that
Luke takes and uploads to Flickr. The smartphone also serves as a wireless hotspot, providing a wireless network
connection between Luke’s on-board computer and a monitoring/debugging station. Furthermore, it provides the
internet connection to the on-board computer (for photo uploading to Flickr) by tethering the phone’s 3G/EDGE
connection over Wi-Fi.

The on-board ASUS Eee PC 1025C netbook serves as Luke’s “brain”. It has an Intel Atom N2800 1.6 GHz CPU
and 1 GB RAM, provides the battery life of around 3 hours and weighs just under 1.25 kg. It is running the
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PHYSICAL STRUCTURE

Photographic camera

x / (Nikon COOLPIX $3100)
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(ASUS Eee PC 1025C)

Built-in speakers

Robot’s base
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Figure 4.1: Luke, an autonomous event photographer robot.
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Groovy Galapagos version of the Robot Operating System framework (ROS, Quigley et al| (2009)) on a Ubuntu
12.04 LTS operating system. All processing (including obstacle avoidance, human subject detection, photographic

composition evaluation and so on) is done on this machine.

4.1.1 Power sources

The robot contains two major power sources: a 2,200 mAb lithium-ion battery which is enclosed in the Kobuki’s
base, and a 5,200 mAh lithium-ion battery installed in the on-board netbook. The table below summarizes how

these sources are used to power individual hardware components of the robot.

Hardware component Power source

On-board netbook Netbook’s 5,200 mAb Li-ion battery
Wheel motors Base’s 2,200 mAb Li-ion battery
Phone (display and Wi-Fi hotspot) ~Netbook

Photographic camera Netbook

Kinect RGB-D sensor Base and netbook

Table 4.1: Energy sources which are used to power individual hardware components of the robot.

During the empirical tests of fully-powered robot, the average discharge times for the netbook’s/Kobuki base’s

batteries were 3 hours and 6 minutes/3 hours and 20 minutes respectively.

Having introduced the main hardware components of Luke and their basic properties, the sections below discuss
the software components that provide all of Luke’s functionality, starting with a high-level overview of the Robot

Operating System.

4.2 Software architecture

All software components of the robot (except the display) are implemented within ROS, an open-source robot
operating system. For this reason, the main concepts of ROS are briefly summarized below.

4.2.1 High-level overview of the Robot Operating System

ROS is based on a graph-like architecture: the computation happens in separate processes, called nodes, which run
in parallel and can be distributed across multiple hosts. A ROS master provides naming and registration services

which allow the nodes to find each other based on their names during their run-time.

Nodes are connected in a peer-to-peer topology through XML—RPCE], using programming-language-neutral in-
terface definitions written in interface definition language (IDL). IDL descriptions are strongly typed and can
be composed from primitive types, other IDL descriptions (nested arbitrarily deep), or the arbitrary length ar-
rays of these types. The language-neutrality allows individual nodes to be implemented in different programming
languages, e.g. Luke uses nodes written in both in C++ (majority) and in Python.

Nodes communicate via one-way message passing. Two modes of communication are supported by ROS: syn-
chronous and asynchronous. In the synchronous communication mode, a service node exposes request and response

'Remote procedure call protocol that uses XML for call encoding and HTTP for call transport.
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IDL definitions, together with the service’s name. A client node that wants to use this service sends a request
message via the ROS master, and blocks until a response message is received.

In the asynchronous communication mode, nodes communicate using the publisher/subscriber pattern. A publisher
node provides the IDL description of the messages that it asynchronously broadcasts on a given topic name. Multiple
subscriber nodes can sign up for the messages on a specific topic. In general, a single node might mix-and-match
these communication patterns, e.g. it might act as a service provider for a certain type of data, while subscribing to
a number of topics and asynchronously publishing other data.

Cohesive sets of nodes (parts of the overall robot’s communication and processing graph) can be grouped together
into a single ROS package, which performs a specific task (e.g. provides robots locomotion). These packages
can include the source code of the nodes, IDL message descriptions for topics and services, supporting libraries,
documentation and other files. They also include launch instructions, which specify how the cluster of nodes in
the package can be integrated into the rest of the computation graph, potentially across different machines.

Finally, to simplify the overall system configuration and maintenance, ROS provides services for global parameter
setting and node output logging. For system’s behaviour tweaking at run-time, ROS parameter server can be
used. Nodes can access the parameter server through ROS master and can read/write parameter values from/to
a global, hierarchical key-value dictionary. Parameters can also be specified via the launch instructions of the
packages. Similarly, ROS nodes can use the system-wide logging server which is capable of logging the node
output messages at five verbosity levels in a printf style syntax, and provides various tools for on-/off-line log
filtering and analysis.

In the next section, the ROS graph of Luke’s architectural software design is presented, including the individual

nodes and the data that flows in the topics/services over which these nodes communicate.

4.2.2 Architectural system design

Luke’s software is architected based on Brooky' (1986) hierarchical levels-of-competence approach. Each of the
layers in Luke’s software hierarchy is based on the behaviours that Luke can perform:

* The base layer allows Luke to aimlessly wander around the environment, while avoiding collisions with

obstacles.

* The second layer suppresses the random wandering behaviour at certain time intervals (adhering to what
Brooks called a subsumption architecture), and enables Luke to compose, take and upload photographs of
people around him.

* The final layer enables Luke to externalize his state ¢) visually, by showing text messages/QR codes on the
attached display, and i) vocally, by reading state messages out loud using text-to-speech software.

This architecture is illustrated in figure @, and the responsibilities of individual nodes in this architecture are

summarized in table .

4.2.3 Individual node implementations

Individual nodes in the architecture were developed using a separate workstation, with Intel Core i5 CPU, containing
two hyperthreaded cores running at 2.3 GHz, and 8 GB of RAM. The workstation was set up to have an identical

software configuration as the robot’s on-board computer (i.e. ROS Groovy Galapagos running on Ubuntu 12.04
LTS).
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Figure 4.2: A simplified Luke’s architectural design diagram, showing ROS nodes (red, green, purple and yellow) together
with I/O devices (gray rectangles), and the data that is being passed between them (text on the arrows). All nodes with
prefixes “rp_" (green, purple and yellow) are the results of the work presented in this thesis, the red nodes are parts of Kobuk-
i/ROS/GFreenect/Kinect AUX libraries. Yellow, green and purple nodes represent the first, second and third Luke’s com-
petence levels (corresponding to obstacle avoidance, human tracking/photograph taking and state externalization behaviours).
The explanations of individual node functional responsibilities are given in table #.2.
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Table 4.2: Summarized responsibilities of individual nodes comprising Luke’s ROS graph.
Node Main responsibility Progr.
lang.

rp_locomotion Robot photographer’s (RP) locomotion node, which converts driving direction ~C++
messages and bumper press events into linear/angular velocity messages.

rp_navigation RP’s navigation node, which multiplexes between the competing driving direc-  C++
tions proposed by obstacle avoidance and photographic composition (framing)
nodes.

rp_obstacle_ RP’s obstacle avoidance node, which uses the point cloud and accelerometer Ci++

avoidance inputs from Kinect to detect obstacles in front of the robot.

rp_head_tracking  RP’s head tracking node, which uses the colour and depth inputs from Kinect C++
to detect and track humans in Luke’s vicinity.

rp_framing RP’s photographic composition node, which uses the human head locations C++
provided by the head tracking node to calculate the most aesthetically pleasing
framing for the picture.

rp_autonomous_  Photograph-taking process coordinator node, which issues commands for tak-  C++

photography ing and uploading the pictures.

rp_camera RP’s node which takes pictures using a photographic camera via the gphoto2 ~ C++
library.

rp_uploading RP’s node which uploads taken pictures to the Flickr online gallery, using the Python
Flickr API.

rp_display RP’s display node, which sends status messages/hyperlinks to taken pictures via C++
TCP to a corresponding Windows Phone application that displays them on an
attached HTC HD?7 phone.

rp_speech RP’s text-to-speech synthesis node, which vocalizes input status messages using ~ C++
the Espeak library.

rp_state_exter- RP’s node responsible for generating vocal/visual status messages about the in-  C++

nalization ternal state of the robot.

Robots state dis- This app serves as a counterpart to the rp_display node, by rendering the in- C#

play app for Win-  coming status messages/hyperlinks (the latter ones as QR-codes) on the phone’s

dows Phone' display.

Camera calibra- This tool is used to calibrate the photographic camera (by removing tangen- C++

tion tool tial and radial lens distortion), which is necessary for photographic camera and
depth camera alignment.

camera GFreenect drivers for Kinect sensor, which provide aligned colour and depth -
images, and point clouds.

kinect_aux Kinect AUX drivers, which provide the Kinect sensor’s accelerometer readings -

mobile_base

yocs_velocity_
smoother
cmd_vel mux

kobuki_safety_

controller

(i.e. the sensor’s tilt angle).

iClebo Kobuki base driver, which provides access to the wheel motor power and
linear/angular velocities, and bumper press/wheel drop/cliff events.

Yujin Robot’s Open-Source Control Software (YOCS) velocity and acceleration
smoother.

YOCS velocity input multiplexer, which serializes and prioritizes incoming ve-
locity messages (giving preference to the safety controller’s messages).

iClebo Kobuki’s safety controller, which keeps track of the base’s wheel drop/-
cliff/bumper events. In the first case it produces a stop command (zero velocity),
in the latter two cases it produces a negative linear velocity.

T Not parts of robot photographer’s ROS node graph.
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For node development and debugging, an Eclipse integrated development environment (IDE) was adapted to work
with ROS node build/launch system. For C++ development an Eclipse CDT (C/C++ Development Tooling) exten-
sion was set-up, providing visual debugging tools, source navigation, refactoring and other capabilities. To ensure
the maintainability of the code, C++ nodes were written adhering to Google’s C++ coding standard. An analogous
extension for Eclipse called PyDev was set up for node development in Python. Finally, for Windows Phone app
development (for the robot’s display), the workstation was adapted to dual-boot into Windows 7, where Microsoft
Visual Studio 2010 IDE was set up for C# development.

Both IDEs were fully configured to use Git distributed version control and source code management system, with the
main repository hosted on a remote server featuring a guaranteed minimum three-copy backup and an immediate
hot-swap system in the case of a hardware or software failure.

Having provided the description of the development environment used in this project, the implementation details
of individual nodes in each of Luke’s competence layers are described below, starting with the random wandering

behavioural capability.

4.2.3.1 Random walking with collision avoidance

Luke’s capability to randomly wander in the environment without bumping into any static or moving obstacles is
implemented in three ROS nodes: rp_obstacle_detection, rp_locomotion and rp_navigation. The implementation of

each of these nodes is briefly discussed below.

Obstacle avoidance (rp_obstacle_avoidance) The proposed method to detect and avoid the obstacles (as de-
scribed in section E.?).Z) is implemented by rp_obstacle_avoidance node.

This node starts the processing by obtaining the input point cloud from the camera/depth_registered/points topic,
provided by the GFreenect library (OpenKinect, 2012) which publishes point clouds at 30 Hz frequency. Similarly,
the obstacle avoidance node obtains the Kinects tilt angle from a kinect_aux/cur_tilt_angle topic provided by the
Kinect AUX library (Dryanovski et all, 2011). This library provides the readings from the Kinect’s accelerometer
at 20 Hz frequency.

Then rp_obstacle_avoidance node performs the main point cloud manipulations as described in section (viz.
point cloud subsampling, translation/rotation to align the ground plane with the plane z = 0, and cropping to the
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Figure 4.3: Performance evaluation of the obstacle detection and avoidance node (rp_obstacle_avoidance) under different point
cloud subsampling filter sizes.
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Figure 4.4: A simplified UML activity diagram of the obstacle avoidance (rp_obstacle_avoidance) ROS node.

ROI in front of the robot). All these manipulations are performed using an open-source PCL library (Rusu and
Cousins, 2011)).

After the point cloud pre-processing, this node calculates the moving average of the ROI in front of the robot
over the last n frames. If the average size exceeds zero, then this node generates a turn direction (LEFT or RIGHT)
which steers the robot away from the centroid of points in the ROL If the ROI over the last n frames is empty,
then this node generates FORWARD driving direction proposal. These direction proposals are published over the
rplobstacle_avoidance/driving_direction topic.

The computational performance of this node largely depends on the point cloud size, which in turn depends on
the grid size of the voxel subsampling filter, used in the pre-processing step. The impact of this filter’s size to the
overall node’s performance was measured using two different machines: Luke’s on-board netbook (with dual-core
1.6 GHz Intel Atom CPU, 1 GB RAM) and the development workstation (with dual-core hyperthreaded 2.3 GHz
Intel Core i5 CPU, 8 GB of RAM). The obtained results are presented in figure @
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Navigation (rp_navigation) The navigation node (rp_navigation) multiplexes between the driving direction sug-
gestions provided by the obstacle avoidance (rp_obstacle_avoidance) and photograph framing (rp_framing) nodes,
based on the input from the autonomous photography process control node (rp_autonomous_photography).

! ?

> Driving direction from > Driving direction from

obstacle avoidance node photo framing node

/rp/obstaclq_avoidance/ /rp/friming/

driving_irection driving_Hdirection

!

Direction source from auto-
nomous photography node

Set proposed direction to
the obstacle avoidance

driving direction )

/rp/autonomouss_photography/
directiop_source

[Autonomous photography node proposes_
photo framing node as the direction source] [Otherwise]

[The driving directipn from the obstacle
avoidance node is "FORWARD",
Autonomous photogrphy node proposes the or the framing nodf proposes "LEFT",
obstacle avoidance nodgq as the direction source] "RIGHT" or "STOR" driving directions]

\

Set proposed direction

to the photo framing
driving direction

Publish proposed
driving direction

/rp/navigation/driving_direction
®
Figure 4.5: A simplified UML activity diagram of the navigation (rp_navigation) ROS node.

In essence, the navigation node enables the framing node to override the random wandering behaviour provided by
the obstacle avoidance node, but only when it is safe to do so. In particular, it allows the framing node to override
the driving direction if and only if the obstacle avoidance node proposes the FORWARD direction, or if the framing

node wants to stop/turn in place.

Its simplified UML activity diagram is shown in figure @

Locomotion (rp_locomotion) Luke’s locomotion node (rp_locomotion) is responsible for generating initial linear
and angular velocity messages, based on multiplexed driving direction generated by the navigation node and on
bumper events generated by the Kobuki’s base node (mobile_base). Its behaviour is illustrated in figure @

Basically, the locomotion node takes the input driving direction (FORWARD, BACKWARD, LEFT, RIGHT or STOP) and
produces an appropriate linear/angular velocity message. For example, a message corresponding to the direction
FORWARD would contain linear and angular velocity vectors I = [0;,0,0]7 and @ = [0, 0, 0]” respectively, where 6; is
adesired linear velocity parameter (settable through the launch file or through the parameter server). Similarly, if the
driving direction is LEFT then linear and angular velocity vectors would contain I = [0,0,0]% and @ = [0,0, 6,]7,

where 0, is the desired angular velocity parameter.

However, if a bumper event is registered then the locomotion node generates the message containing I = 0 and
a = [0,0,£6,]7 (where the direction of turn depends on which bumper registered the event). The locomotion

node keeps producing this message until the robot turns ~ 180° before continuing its random wandering.



4.2. SOFTWARE ARCHITECTURE 72
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Figure 4.6: A simplified UML activity diagram of the locomotion (rp_locomotion) ROS node.

Once the locomotion message is constructed, it is passed to Yujin Robot’s Open-Source Control Software
(YOCS) velocity multiplexer node (cmd_vel_mux). This node also receives the input from YOCS safety con-
troller (kobuki_safety_controller), which generates temporary zero/negative linear velocity messages in the respective
cases of wheel drop or clift/bumper events. The YOCS velocity multiplexer mode prioritizes the input from the
safety controller node, hence the robot is further prevented from causing damage to itself, or objects in its envi-

ronment.

The output produced by YOCS velocity multiplexer is sent to the YOCS velocity smoother (yocs_velocity_smoother),
which applies the given acceleration/deceleration and velocity limits to input velocities, thereby ensuring a fluid
motion of the robot. These smoothed linear/angular velocities are then sent directly to the Kobuki’s base node
(mobile_base), which appropriately sets the robot’s wheel speeds.

4.2.3.2 Taking well-composed photographs of humans

Luke’s second major behavioural competence involves his ability to ) track humans in an unstructured environ-
ment, i7) take well-composed pictures of them, and 7ii) upload these pictures to an on-line picture gallery. This
competence layer is implemented by five ROS nodes: rp_head_tracking, rp_framing, rp_camera, rp_uploading and
rp_autonomous_photography, each of which is discussed in more detail below.

Head detection and tracking (rp_head_tracking) The head detection and tracking node (rp_head_tracking) is the
most sophisticated node in Luke’s ROS graph, consisting of multiple loosely-coupled classes with clearly separated
responsibilities (shown in UML class diagram in figure @)

This node implements the human subject detection and tracking methods, proposed in section . In particular,
it performs multiple human detection from depth data using an extension to Garstka and Peters’ (2011) method,
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@ RPHeadTrackingNode <— «enumeration» HeadTrackingState
— state: HeadTrackingState GATHERING_FACE_HUE_DATA, DETECTING_HEADS, TRACKING_HEADS, INVALID
— heads: std::vector<Head>
— depth_head_detector: RPDepthHeadDetector e RPDepthHeadDetector <—
— depth_head_tracker: RPDepthHead Tracker — node: const ros::NodeHandle&

— depth_image_processor: RPDepthImageProcessor + is_pixel_satisfying_head_size_bound: bool[,]
— color_image_processor: RPColorImageProcessor

— color_face_detector: RPColorFaceDetector

— face_hue_classifier: RPKernelLogisticRegressionClassifier
— skin_classifier: RPBayesianSkinClassifier

— getStaticParameters(): void

— getDynamicParameters(): void

+ detectHeads(depth_image:const cv_bridge::CvImage::ConstPtré& ,
color_image: const cv_bridge::CvImage::Ptr&,
skin_classifier: RPBayesianSkinClassifier&,
klr_hue_classifier: RPKernelLogisticRegressionClassifier&,

heads: std::vector<cv::Rect>&, ...): void

— getStaticParameters(): void + getPixelsSatisfyingHeadBounds(depth_image: const cv_bridge::CvImage::ConstPtr&): void k>

— getDynamicHeadDetectionAndTrackingParameters(): void

— heads_publisher: ros::Publisher
— state_publisher: ros::Publisher

— updateState(state: const HeadTrackingState): void

— detectHeads(depth_image: const cv_bridge::CvImage::Ptr&, > RPDepthHeadTracker
color_image: const cv_bridge::CvImage::Ptr&): void

— detectFaces(color_image: const cv_bridge::CvImage::ConstPtr&): void

— trackHeads(depth_image: const cv_bridge::CvImage::Ptr&): void

— publishHeads(depth_image: const cv_bridge::Cvimage::ConstPtr&): voi

+ trackHeads(depth_image: const cv_bridge::CvImage::ConstPtr&,
depth_detector: RPDepthHeadDetector&, heads: std::vector<Head>&): void

RPColorFaceDetector
— frontal_cascade: cv::CascadeClassifier
— profile_cascade: cv::CascadeClassifier

RPDepthImageProcessor

— cumulative_row_sum: float[,];

— integral_image: float[,];

— hsvToRgb(h: float, s: float, v: float): cv::Vec3b

+ smoothDepthImage(depth_image: const cv_bridge::CvImage::Ptr&;, radius: const int): void

+ filterDepthShadow(depth_image: const cv_bridge::CvImage::Ptr&): void

+ filterMissingData(depth_image: const cv_bridge::CvImage::Ptr&): void

+ convertDepthImageToRenderImage(depth_image: const cv_bridge::Cvimage::Ptr&,
render_image: cv::Mat&): void

— getOverridableParameters(node: const ros::NodeHandle&): void
+ detectFaces(input_mage: const cv_bridge::CvImage::ConstPtr&,
faces: std::vector<cv::Rect>&): void

RPBayesianSkinClassifier
— skin_histogram: double[,,]
] RPColorImageProcessor — non_skin_histogram: double[,]

— getOverridableParameters(): void

— initialize(std::string skin_histogram_file_name,

+ convertColorImageToBackpropagationImage(color_image: const cv_bridge::CvImage::ConstPtr&, X Std': :'string' non_s'ldn_hiftogram_ﬁle_na.me): void
render_image: cv::Matd, + skinProbability(r: int, g: int, b: int): double
skin_classifier: RPBayesianSkinClassifiersc, + nonSkinProbability(r: int, g: int, b: int): double
skin_likelihood_ratio_minimum: const double);

+ createHistogram (histogram_region: const cv::Mat&, histogram: std::vector<double>&): void

+ convertColorImageToRenderImage(color_image: const cv_bridge::CvIimage::ConstPtr&,
render_image: cv::Mat&): void

«struct» RPTrainingPoint

+ features: std::vector<double>, + is_positive: bool

«namespace» RPDistanceConverter ‘

«inline»+ horizontalWidthToPixels(width: float, distance: float): float
«nline»+ verticalHeightToPixels(width: float, distance: float): float
«nline»+ pixelsToWidth(pixels: int, distance: float): float

«nline»+ pixelsToHeight(pixels: int, distance: float): float

RPKernelLogisticRegressionClassifier
— training_points: std::vector<RPTrainingPoint>
— weights: std::vector<double>
— gradient: std::vector<double>
— step_sizes: std::vector<double>
— kernel: RPKLRClassifierKernel

RPKLRClassifierGaussianKernel

— standard_deviation: double

+ addTrainingSample(features: std::vector<double>&, is_positive: bool): void
«constructor» RPKLRClassifierGaussianKernel(standard_deviation: double) + train(step_size_threshold: double, time_limit: double): void
«irtual» + k(x: const std::vector<double>&,y: const std::vector<double>&): double + classify(x: const std::vector<double>&): bool

+ probability(x: const std::vector<double>&): double

RPKLRClassifierPolynomialKernel

— degree: double ,
«constructor» RPKLRClassifierPolynomialKernel(degree: double) RPKLRClassifierKernel
B assifierKernel

«irtual> + k(x: const std::vector<double>&, y: const std::vector<double>&): double

— kernel_matrix: cv::Mat

+ buildKernelMatrix(training_points: const std::vector<RPTrainingPoint>&): void
«irtual> + k(x: const std::vector<double>&, y: const std::vector<double>&): double

RPKLRClassifierLinearKernel

«irtual> + k(x: const std::vector<double>&, y: const std::vector<double>&): double

Figure 4.7: A simplified UML class diagram of a subset of classes implementing rp_head_tracker ROS node. Image pre-
processing/utility classes are shown in yellow, depth/colour face detectors and trackers are shown in green, skin classifiers are
shown in red, and the node’s “command-and-control” class is shown in purple.



4.2. SOFTWARE ARCHITECTURE 74

detected head candidate verification using RGB data and Bayesian/kernel logistic regression classifiers, and detected
human subject tracking using a modification of continuously-adaptive mean-shift tracker, by Bradski (1998).

The rp_head_tracking node persists two main pieces of state between consecutive frames:

* a set of currently detected/tracked heads H = {(7;, fi)}i=1,... k» where each head 7 is represented by a
rectangle in the image plane r; and the number of frames f; since it was last detected, and

* the mode that the rp_head_tracking node is operating in.

Depending on whether the Bayesian or kernel logistic regression classifier is used for skin detec-
tion, the head detection/tracking node can be in one of {DETECTING_HEADS, TRACKING_HEADS} or
{GATHERING_FACE_HUE_DATA, DETECTING_HEADS, TRACKING_HEADS} modes respectively. The behaviour of the
rp_head_tracking node in each of those modes is further described below, but first the head set # update mechanism

is explained.

Let H¢ = {(7i, hi)¢} be the set of detected/tracked heads at time ¢. To obtain the updated set H;; (which is
initialized to H¢41 = Hy) the following procedure is applied:

* If the node is in DETECTING_HEADS mode, then let R:y+1 = {r;} be the set of head rectangles detected
at time ¢ + 1. Given this set, the counters of “old” heads which do not have corresponding “new” head

detections are incremented:
V(’l“i, hi)t € H;. (—\37‘]' € RH_l.suﬁcientlySimilar(ri, Tj)) — (Ti, hi)t+1 = (Ti, h; + 1)15,

where sufficientlySimilar(x,y) is the predicate that determines whether two rectangles  and y are

sufficiently similar.  Possible variants of this predicate include the thresholded Jaccard’s coefficient
|zNy|
|2Uy|
(sufficientlySimilar(x,y) = | Ny| > 0, as used in this project).

(sufficientlySimilar(x,y) = > #) or a simple rectangle intersection non-emptiness check

Then the “old” heads which have corresponding sufficiently similar “new” heads have their histories reset
and their head rectangles updated:

V(’I"i, hi)t € Hs. (E|’I°j S 72,5+1.su]ﬁcientlySimﬂar(’r‘i, rj)) — (’I"i, hi)t—H = (Tj, 0)

Since new people might have entered the robots field-of-view, the “new” heads that do not have correspond-

ing “old” heads are added to the head set:

Vr; € Rey1. (—3(7j, hy)e € HysufficientlySimilar(ri, r;)) — Hiyr = Hip1 U {(r4,0)}.

Finally, the heads that were not re-detected for more than n frames are removed from H¢1:

V(’I"Z‘, hi)t+1 S ,Ht-i-l-hi >n — Ht—f—l = ’Ht+1\{(7’i, hz‘)t+1}-

In essence this approach is quite similar to the clock-style page replacement algorithms in OS virtual memory
management systems, in a sense that the detection algorithm is allowed “second chances”. More precisely, a
given head must not be found in n subsequent detection attempts before it is removed, thereby reducing the
sensitivity of the overall head detection and tracking approach to the sensor’s noise and inaccuracies of the
head’s detection method.
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* If the node is in TRACKING_HEADS mode, then the modified Bradskis (1998) CAMShift algorithm is used
to track each of the heads individually, as described in section .

In particular, for each head (7, hi)iy1 € Hev1 let 7; be the new head rectangle obtained by CAMShift

tracker.
If |7;] > O then the head set ;41 is updated by setting (74, b )e+1 := (74, hi)i41.
Otherwise, the head is considered lost and is removed from the head set, i.e. Hyy1 := Hep1 \{(7i, hi)es1}-

* The head set H is not used when the node is in GATHERING_FACE_HUE_DATA state. The node is in this
state only during the robot’s initialization to gather face/background hue samples using the Viola and Jones

(2001) face detector and the face/background region extraction heuristic described in section .

The finite-state machine that shows the transitions between each of the states of rp_head tracking node is
given in figure @ and the behaviour of the node in each state is explained below, starting with a GATHER-
ING_FACE_HUE_DATA state.

ce hue sample count > n

A

Gai‘oe"ed £
k frames elapsed since

GATHERING_FACE_HUE_DATA
last detection, or [H,|=0

a) Node’s state transitions if KLR b) Node state transitions if Bayesian

DETECTING_HEADS

TRACKING_HEADS

DETECTING_HEADS

k frames clapsed since

last detection, or |'Ht‘:0

TRACKING_HEADS

skin hue classifier is used skin colour classifier is used

Figure 4.8: Finite-state machines of the rp_bhead_tracker ROS node if @) the kernel logistic regression skin hue classifier, or
b) Bayesian skin colour classifier is used.

In the GATHERING_FACE_HUE_DATA state, frontal and profile face Viola and Jones (2001) detector cascades are used
for face detection in incoming RGB frames until n face rectangles are detectedd. Each of the detected face rectangles
is split into face and background regions (as described in section ), and two normalized hue histograms are
constructed. This yields a set of training examples D = {(h1,t1), ..., (hapn,t2n)} (where h; is a normalized hue
histogram, with ¢; = 1 if the histogram is of skin region, and ¢; = 0 otherwise). This training set is then used to

train a kernel logistic regression (KLR) classifier.

To obtain a maximum-a-posteriori (MAP) estimate of the KLLR’s weight vector e, the objective function in equation
() is minimized using the resilient backpropagation variant of the gradient descent algorithm (iRprop~, Ried-

miller (1994)). Since this algorithm requires a gradient of the likelihood function, it is calculated from equation

() as VL(a) = (%(?), e %@), where

8‘;&(@ =% [(f%t log (3 i K (hy, ) + aik(l — 1) log(1 — o3, a; K (hy, him} "

9 2ijaiaK(hi hyj)
80% 2)\2

= =3 [t = o5, i (hy, b)) = (L= t)0(5, ;K (hy, b)) K (hsh)+

+

1
+ p Z K(hi, hk)ai

=3 [55  o(, ay hy, h) - 6] K(hi, ).

2The implementation of the face detector with trained cascades is obtained from the open-source OpenCV library (Bradski, 2000).
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Algorithm 4.2.3.1 A variant of the resilient backpropagation algorithm iRprop™ (llziedmillefl, M), as used by
rp_head_tracking node for the kernel logistic regression classifier training. Given the objective function L(cv), its
gradient VL(ax), a kernel K (z,y), initial step sizes s and the time limit for training 7" this function attempts to
find the weights & = (a1, ..., ay,) minimizing £().

REsILIENT-BackPrOPAGATION(L (at), VL (), 5, T')
1/ Initialize the weights and the gradient for the next step

2 a+0,g+0

3 repeat

4 g+ VL(a)

5 fori =1tn

6 if g; x g, > 0 // Direction is unchanged

7 s; + 1.2s;

8 elseif g; x g} < 0 // Direction changed

9 s; < 0.5s;
10 gi < 0 // Force no change in the next iteration
11 / Update the weights based on step size and gradient direction
12 a; < a; — s; % sign(g;)
13 /N Save the gradient
14 g +g

15 undil time 7" expires

16 return o

After obtaining the training example set D the rp_head_tracking node uses the adapted iRprop™ algorithm (given
in listing ) to train a KLR classifier with an RBF (Gaussian) kernel (i.e. K(x,y) = exp (—%)) A

few examples of pattern classification using a kernel logistic regression trained using iRprop™ algorithm are shown
in ﬁgure

Figure 4.9: Sample non-linear patterns classified using logistic regression classifier with a radial basis function kernel and a
Gaussian prior, trained using resilient backpropagation algorithm.

The visual summary of rp_head_tracking node’s operation in GATHERING_FACE_HUE_DATA mode is shown in figure
i

After training the kernel logistic regression classifier, the rp_head_tracking node switches into the DETECT-
ING_HEADS state. In this state, an incoming depth image is searched for the presence of humans, and if there are

any, the bounding rectangles of their heads are produced. To achieve this task, the extended Garstka and Peters’
() method (as described in section is used to detect the candidate human head rectangles from the
depth data.
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Figure 4.10: A simplified UML activity diagram of the rp_head_tracking node’s behaviour in GATHERING_FACE_HUE_DATA
mode.

To incorporate the extra information present in the RGB data, these rectangles are further examined by either the
KLR face hue classifier or a Bayesian skin colour classifier. If the KLR classifier is used then the binary mask from
part ¢) of figure is fitted to each of the detected head rectangles, and the hue histogram h is calculated from
the region within the mask. This histogram is then normalized and used as a feature vector for the KLR classifier,
which produces the probability Pr(skin|h) = o(>_,; a; K (h;, h)). The overall detection is classified as a head if
and only if Pr(skin|h) > 6, where 6 is a user-specified threshold.

If the Bayesian skin colour classifier is used (as described in detail in section ) then the decision on whether
the candidate head rectangle should be rejected/accepted is made based on the proportion of the skin pixels in the
candidate rectangle. To count this proportion, a given pixel in the candidate head’s window with values R = r,

G = g and B = b (below shortened as rgb) is classified as belonging either to the skin, or non-skin region based

% >+ 6, where 6 is a user-specified threshold.

on the likelihood ratio
The maximum likelihood estimates for the probabilities Pr(rgb|skin) and Pr(rgb|—skin) are learned off-line, from a
large-scale, supervised Compaq skin-image datased containing 80,310,355 manually tagged skin and 861,173,849

non-skin pixels (Jones and Rehg, 2002).

After using the KLR or Bayesian classifiers to verify the head candidates, the final detected head set R4 is used
to update the head history set Hy11 using the procedure described earlier. If ;11 = (), then the node stays
in DETECTING_HEADS state and the head detection process is repeated for a new depth input frame. Otherwise,
the rp_head_tracking node switches into TRACKING_HEADS state. This behaviour is visually summarized in figure

il

In the TRACKING_HEADS state, a modified continuously adaptive mean-shift (CAMShift) algorithm is used to track
detected heads using depth data (as described in detail in section ) As a quick reminder, the depth image is
first preprocessed by filtering depth shadows and smoothing it with an averaging filter. Then the constraints from
equation (@) are used to reject local horizontal minima which could not possibly lie on the vertical head axis,
thereby defining a degenerate head probability. The new head rectangle is obtained by finding the mode of this
probability distribution using the mean-shift approach, while the size of the new rectangle is obtained from this
distribution’s zeroth moment, as described by Bradski (1998).

After obtaining the new head rectangle positions and sizes, degenerate rectangles (with zero area) are removed from

This dataset was generously provided personally by M. Jones.
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Figure 4.11: A simplified UML activity diagram of the
rp_head_tracking node’s behaviour in DETECTING_HEADS

mode.
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Figure 4.12: A simplified UML activity diagram of the
rp_head_tracking node’s behaviour in TRACKING_HEADS
mode.
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Figure 4.13: Performance evaluation of the head detection and tracking node (rp_bead_tracking) with respect to different head
re-detection thresholds k and various head detection/tracking modes.

the head history set. If the resulting head set is empty, i.e. H¢41 = () then the rp_bead_tracking node immediately
switches to DETECTING_HEADS mode. Otherwise, it stays in TRACKING_HEADS mode until k frames elapse since the
last head detection attempt. The user-specified threshold & determines the trade-off between the computational
efficiency and the node’s responsiveness to new human subjects (i.e. a small k reduces the average time the robot
needs to start tracking a new person in its FOV, and vice versa). This behaviour is again summarized visually in

UML activity diagram .

The run-time performance of this node is measured for a variety of parameter combinations on both on-board and
development computers. The results of this evaluation are presented in figure .

Photo composition and framing (rp_framing) The second most important node in Luke’s “picture taking” be-
havioural capability layer is the photograph composition and framing (rp_framing) node. This node works as
follows.

First of all, it subscribes to the locations of detected/tracked human subject heads in Kinects image plane, published
by the rp_head_tracking node. Then, this node maps the head locations from Kinect’s image plane to the photo-
graphic camera’s image plane and calculates the ideal framing based on the framing rules described by Dixon et al.
(2003). If the calculated ideal frame lies outside the current photographic camera’s image plane, a turn direction is
proposed; otherwise, the ideal frame location is published over /rp/framing/frame topic. These steps are described
in more detail below.

In order to map the locations of detected heads from Kinect’s to photographic camera’s image plane, the following
observations are used:

* Each point p = [z, y]” on Kinect’s image plane can be mapped to a corresponding point P = [X,Y, Z]T
in the world coordinates (with the Kinect sensor at the origin).

* The extrinsic transformation operator between Kinect sensor and photographic camera can be obtained by
measuring the translation and rotation between the two devices on the robot’s rigid frame. Let ¢ be the
obtained translation vector and R be the obtained rotation matrix.
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* If the pinhole model of the camera is assumed, then the corresponding point p. on the photographic camera’s

e () ()

where f and f; are the horizontal/vertical focal lengths of the photographic camera and P, = [ X, Yz, z)"

image plane could be calculated as

are the coordinates of the world point P in the photographic camera reference frame, obtained by calculating

P.=|Y. | =RP+t. (4.1)

However, the pinhole model is inaccurate due to ) the principal point’s displacement, and i7) lens distortions.
The former phenomenon occurs due to the camera CCD/CMOS sensor’s center being slightly misaligned from the
lens’ optical axis. To deal with this inaccuracy, the model can be extended with two parameters ¢, and ¢, which

represent the horizontal and vertical offsets of the image center coordinates from the camera’s optical axis.

In this case, a world point projected onto the camera image plane would have the coordinates

X, Y, ’
DPc = |:fa: <Zc) +Cx7fy (Zc> +Cy:| .

Define the camera intrinsics matrix as

fz 0 ¢
M=1|0 f, ¢ |, 4.2)
0 0 1

then the projection of the world point P onto a camera image plane could be expressed in homogeneous coordinates
aspc.=MP. = M(RP +t).

To account for the second phenomena (viz. lens distortion) a “'plumb bob" model proposed by Brown (1966) can
be used. This model simulates both radial distortion caused by the spherical shape of the lens, and the tangential
distortion, arising from the inaccuracies of the assembly process.

More precisely, the radial distortion occurs since the light passing through the edges of the spherical lens is refracted
more severely than the light passing through the center of the lens (as illustrated in parts a) and ¢) of figure )
The tangential distortion, occurring when the lens and a CCD/CMOS sensor are not perfectly parallel is illustrated

in parts b) and d) of figure .

In Brown’s model the radial distortion is approximated by the Taylor series in the point’s radial distance from the
image plane’s centre. Given an undistorted point on the camera’s image plane p; = [x;,v;]”, the distorted point

Pd = [24,v4)7 is defined as

Ld
Yd

Pa =

] = (1 + k1r? + kort + k3r® + )

i ] : (4.3)
Yi

where k; are the radial distortion parameters and r = ||p;|| = /i + v
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Figure 4.14: Example of radial and tangential lens distortions. Image a) shows the radial (“barrel”) distortion, where rays
further from the center of the lens are refracted stronger than the rays closer to the center (notice the equidistant object points
on the right, and non-equidistant points on the sensor on the left). Image b) shows the tangential distortion, occurring due to
misalignment between the lens and the image sensor. Images ¢) and d) taken from Bouguet (2010) show the radial/tangential
distortion plots for a particular lens, with the arrows indicating pixel displacements due to lens distortion.

The tangential distortion in Brown’s model is described as

Pd = , (4.4)

Yd p2(2ziy;) + p1(r? + 2y;?)

x4 ] _ [ p1(22y;) + pa(r? + 22;2)

where p1, p2 are the tangential distortion parameters (see Brown (1966) for full derivation).

Then the final projection model which combines the principal point displacement and radial/tangential distortions
can be defined by combining equations (@), (@), (@) and () In particular, let P = [X,Y, Z]7 be the
point in Kinect-centred world coordinates. Then its projection on the photographic camera’s image plane p. can
be obtained in the following way:

1. Transform the point from world coordinates to the photographic camera’s coordinate frame using equation

{.1:

P.=RP +t.

2. Calculate the radial and tangential distortion in the dimensionless coordinates using equations () and
T
() Let [z, yi]T = [)Z%’ }Z/—i} and r = y/2;2 4+ y;2. Then the distorted point py is given by

)

T
Pd = [ d] = (1 + kyr? + kor?)
Yd

T p1(223y;) + pa(r? + 2z,%)
+ 2 2
Yi p2(2zyi) + p1(r? + 2y;%)
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where the Taylor series expansion up to the second order (k2) is used to approximate the radial distortion.

3. Finally, simulate the principal point displacement using the camera intrinsics matrix M from equation (@)
to obtain the homogeneous coordinates of the projected point p,:

pe=M Pa | feTa +co
.=
1 fyyd+cy

The parameters of this projection model (viz. k1, k2, p1, 2, fz, fy, ¢z and ¢;) can be obtained automatically, using
a set of calibration images. A common choice for such calibration objects is a chessboard pattern, as shown in

figure .

Given the positions of the internal corners of the chessboard pattern in the image 7 and the prior knowledge that
the points representing these corners should be strictly coplanar, the homography H; between the object plane
and the image plane can be found for each chessboard image 7. Under the no-distortion assumption of the camera,
the intrinsics matrix M can be calculated from the collected homography matrices H; either using a closed-
form solution (more prone to noise) or by the maximum-likelihood optimization using the Levenberg-Marquardt
algorithm (see Zhang (1999, 2000) for full details).

Having obtained the intrinsic matrix containing focal length and principal point offset parameters, the distortion
coefficients k1, k2, p1,p2 can be found using the method by Brown (1971). Essentially, the obtained intrinsic
parameters are used to project the chessboard corner points onto the camera’s image plane under the pinhole camera
model. Assuming that the actual distorted locations of these points in the calibration images were produced by the
the radial/tangential distortion model (equations (@) and ()), the parameters k1, k2, p1, p2 can be calculated
using a generalized least squares approach (by minimizing the sum of the squares of the distances between the
distorted pinhole projections and the ground-truth positions in calibration images; see Brown (1971) for more

details).

The implementations of Levenberg-Marquardt and Brown's approaches for the intrinsic matrix and distortion co-
efficient estimation respectively are provided in the open-source computer vision library (OpenCV, Bradski (2000)).
Using this library, the point-and-shoot Nikon COOLPIX S3100 camera that Luke uses to take pictures is undis-
torted, obtaining an average chessboard corner point re-projection error of 0.658 pixels in 3.5 MP resolution
calibration images (see figure for the example of an undistorted image).

Using these obtained intrinsic and distortion parameters, the points from the depth point cloud provided by the
Kinect sensor can be projected into the camera’s image plane. Two example scenes showing the point clouds

projected into the photographs taken with the Nikon COOLPIX S3100 camera are shown in figure .

Figure 4.15: Sample calibration images (4,320 x 3,240 pixel resolution) containing a chessboard pattern in various poses,
used for the estimation of photographic camera’s intrinsic matrix and distortion parameters.
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Distorted

Gap due to distortion Undistorted Corrected distortion

Figure 4.16: An example of an undistorted calibration image, obtained by inverting Brown’s (1966) distortion model. Notice
that the straight red line in the images on the left hand side does not go exactly through the corners of the chessboard due to
tangential and radial distortion.

Using a similar approach, the 3D locations of the detected heads (provided by the rp_bead_tracking node) are
projected onto the photographic camera’s image plane. Then, based on these locations the ideal framing for the
photographs is calculated using the photograph composition heuristics proposed by Dixon et al| (2003). These
heuristics are based on the following four photographic composition rules (Grill and Scanlon, 1990):

* Rule of thirds, which suggests that the points of interest in the scene should be placed at the intersections (or
along) the lines which break the image into horizontal and vertical thirds.

* No middle rule, which states that a single subject should not be placed at a vertical middle line of the
photograph.

* No edge rule, which states that the edges of an ideal frame should not be crossing through the human subjects.

* Occupancy (“empty space”) rule, which suggests that approximately a third of the image should be occupied
by the subject of the photograph.

Given these rules, Dixon et al| define three different heuristics for single person and wide/narrow group picture
composition, illustrated in figure . In order to choose which heuristic will be used they employ an iterative
procedure, which starts by identifying a human subject closest to the center of the current image. The ideal framing
for this person is calculated using the single person composition heuristic from figure . If this frame includes

Figure 4.17: Two scenes with automatically merged RGB and depth data from the photographic camera and the Kinect sensor.
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Figure 4.18: Ideal framing of single person and wide/narrow group shots, as proposed by Dixon et al| (2003). The composition
rules for the single person/narrow group/wide group shots are shown in the top row of images (left-to-right). Images in the
bottom row show the photos obtained from these proposed frames.

other candidate subjects, the group framing rules are applied iteratively on the expanded candidate set, until no new
candidates are added. Figure shows the intermediate frames obtained while composing a group picture using

this procedure.

After an ideal frame F' is calculated, the rp_framing node calculates the overlap coefhcient O between the part of
the frame visible in the current image I and the whole frame:

_|INF|

0
|F|

a) Iteration 1 b) Iteration 2 ¢) Iteration 3 (final frame)

Figure 4.19: Illustration of the iterative framing method for the photo containing multiple human subjects, as described by
Dixon et al| (2003). Detected human subjects which are considered at the current iteration are shown in red, subjects which
need to be considered in the next iteration since they are present in the current “ideal frame” are shown in blue, and the
subjects which are detected but can be ignored at the current iteration since they are outside the “ideal frame” are shown in
green rectangles.
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If the overlap coeflicient O exceeds a given threshold 6o and the visible part of the frame exceeds the minimal
width/height thresholds 6, x 6}, the node considers that the satisfying composition has been achieved and publishes
the position/size of the ideal frame over the /rp/framing/frame topic. Otherwise, the framing node determines the
direction of where the robot should turn in order to improve the quality of the composmonl and publishes these

driving directions over the /rp/framing/driving_direction topic.

In order to prevent the robot from getting stuck indefinitely while trying to achieve an ideal framing, a decaying
temporal threshold for the minimum required overlap 6p is used. In particular, let At be the time that the robot
has already spent trying to frame the picture, maxa; be the maximum allowed time for the picture framing and
maxao be the maximum deviation from the ideal overlap that could still be tolerated. Then 6 is defined as

At
0o(At) = 1 — min | max X ——, max
AO maxAt AO
In the current robot photographer’s implementation, the framing time limit maxa; is set to 60 seconds, the maxi-
mum deviation from the ideal overlap maxa o is set to 50% and the minimum visible frame size thresholds 6y, x 6},

are set to 2, 160 px x 1,620 px.

The overall behaviour of rp_framing node is visually summarized in a simplified UML activity diagram in figure

[No new head rectangle
candidates gre added to
the obtained frame]

Detected/tracked heads (in
Kinect's image plane) from
the head tracking node

Calculate the overlap between
the part of the frame visible in
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/rp/head_trjcking/heads X
Transform head rectangle h [Overlap exceeds a [Otherwise]
corner points into world coor- temporally decaying
dinate frame (with Kinect threshold arld the visible
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\l/ the size threshold] too gmall]
. Set frami
4 Project head rectangle corner ) Set framing status a OS i;f;rRXHA:IHEg ?lsgl(x)s ( "FRANF]; SmU}Ir“goS?n];sotLoINDs" )
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-
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Figure 4.20: A simplified UML activity diagram of the photograph composition and framing (rp_framing) ROS node.

“Based on the position of the ideal frame’s centre w.r.z the image’s centre.
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Autonomous photography process coordination (rp_autonomous_photography) The rp_autonomous_
photography node coordinates the actual photograph taking/uploading process, and divides the robot’s control time
between the obstacle avoidance (rp_obstacle_avoidance) and framing (rp_framing) nodes.

More precisely, the behaviour of the rp_autonomous_photography node is split into individual cycles, where at the
end of each cycle a new, well-composed picture is taken. Each cycle divided into two halves: in the first half the
autonomous photography node instructs rp_navigation node to use the driving direction inputs from the obstacle
detection and avoidance node. This allows the robot to randomly navigate the environment for a fixed amount of
time, and ensures that the robot does not take all pictures from the same position.

After k seconds (where k is the duration of the obstacle avoidance phase, settable at launch or through the ROS
parameter server) the autonomous photography node gives control to the framing node, which attempts to produce
an aesthetically pleasing picture composition. This is the second half of the picture taking cycle.

As soon as the framing node establishes a satisfactory framing (indicating it by publishing “FRAMED” state message),
the autonomous photography node issues a photo request to rp_camera node. Once the picture is taken and
downloaded from the camera to an on-board computer, the autonomous photography node crops out the proposed
frame rectangle and uploads it to Flickr using rp_uploader node. After uploading the cropped-out frame, the
autonomous photography node gives the control back to the obstacle avoidance node and a new photograph-taking
cycle is started.

This behaviour is illustrated visually in UML activity diagram in figure #.21.

$ ( Set node's state to

Framing status and frame "AVOIDING_OBSTACLES"
rectangle from framing node \l/

/rp/framing/frame 4 Set driving direction source toj
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[Node is in "AVOIDING _ 0 N\ DANCE_NODE"
OBSTACLES" state] \]/

[Node is not in "AVOIDING_OBSTACLES" state]

Driving direction source

[ for rp_navigation node
Framing status /rp/autonomous_photography/direction_source
is not "FRAMED"] @ P P prepty -
[Framing statug is "FRAMED"] Set the framing timer to
k seconds and start it
Set node's state to
"TAKING_PICTURE"

\#,

Photo request for > > Response from rp_camera con-

rp_camera node taining taken photo's filename

«request»/rp/famera/photo «response»/rpfcamera/photo $

\]/ > Framing timer callback
Crop out the frame rectangle (after k SeCOﬂdS)
from the taken photo

Set node s state to
"FRAMING PICTURE"
Set node's state to
"UPLOADING_PICTURE"

Set driving dlrectwn source to
\; "FRAMING NODE"
Photo upload request > > Response from rp_uploader

for rp_uploader node containing upload status Driving dlrectlon SOUTCe >

«request»/rp/uploader/upload «response»/rp/ploader/upload for rp_navigation node
/rp/autonomous_photogaphy/dlrecnon_source

Figure 4.21: A simplified UML activity diagram of the autonomous photography process coordination
(rp_autonomous_photography) ROS node.
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Photograph taking (rp_camera) The photograph taking node (rp_camera) acts as an interface between other
ROS nodes and the physical Nikon COOLPIX S3100 camera that Luke uses to take pictures.

To communicate with the photographic camera this node uses the libgphoto2 API for the open-source gPhoto?
(Barbé et al), 2002) library, which in turn connects to the camera using the Picture Transfer Protocol (PTP).
This node provides access to the camera for the rest of the Luke’s ROS graph by exposing a ROS service at
Irplecameralphoto. Any other ROS node can send an empty request to this service, which rp_camera node transforms
into the photo capture request for the libgphoto2 API. This request triggers a physical camera capture, storing the
taken picture in the camera’s built-in memory. After the picture is taken, rp_camera node moves the picture from
the camera’s memory to the on-board computer and returns the string file name of the downloaded picture via the

service response. This basic behaviour of 7p_camera node is visually summarized in .

This node also exposes a couple of parameters (settable either at launch time or at run-time via the parameter
server), which allow other nodes to modify basic camera parameters, like the flash mode. By default, the flash is set
to fire for every picture, acting as an additional visual cue of the picture taking moment. Also, while this node can
be used more broadly, at the moment only the rp_autonomous_photography node uses it to take pictures of human

subjects in Luke’s environment.

«request»/i rp/gmera/ ‘photo

> Empty photo service

reques(

«request»/rp/uploader/upload
Format libgphoto2
capture request > Flickr upload request con-

taining picture's file name

Issue a capture request> > Capture confirmation

for hbgphotoZ from hbgphotoZ Format Flicke APL
photo upload request
Format libgphoto2 Issue Flickr API Flickr API photo
e e, P photo upload request upload confirmation
Set the upload status
in the service response

Upload service response >

containing upload status

«response»/rp%loader/ upload

Issue a photo download Download confirmation
request for llbgphotoZ from hbgphotoZ

Set the downloaded
photo file name in the
service response

Photo service response

with photo filename Figure 4.23: A simplified UML activity diagram of the
«response»/rpfcamera/photo photograph uploading (rp_uploader) ROS node.

Figure 4.22: A simplified UML activity diagram of the
photograph taking (rp_camera) ROS node.

Photograph uploading (rp_uploader) The photograph uploading node (rp_uploader) uses the Python Flickr API
(Stiivel, 2007) to upload image files to an online Flickr photo gallery. It exposes the Flickr APT to the rest of ROS
graph by providing /rp/uploader/upload ROS service.

Any node in Luke’s node graph can send a ROS request to this service containing a file name of the picture to
upload. After receiving this request the rp_uploader node loads the picture from the hard drive of an on-board
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computer and uploads it to Flickr; the upload status (success/fail) is returned to the calling node as the service
response (as illustrated in figure ) Other parameters of the uploaded photo (like title, description or tags) can
be set through the ROS parameter server.

At the moment, only the rp_autonomous_photography node uses the rp_uploader node to upload the taken pho-
tographs.

The internet connection required for the picture uploading is provided by the on-board HTC HD7 phone (which
also acts as a robot’s state display) by tethering the phone’s 3G/EDGE data connection over Wi-Fi to an on-board
netbook which runs the overall Luke’s ROS graph.

4.2.3.3 Externalization of the current state via vocal and visual messages

The third and final behavioural competence of the implemented autonomous photographer robot involves its ability
to externalize the current state via synthesized voice messages (played over the on-board computer’s speakers),
and text messages/QR codes (shown on the display of the attached HTC HD7 phone). This competence layer is
implemented by three basic ROS nodes (rp_state_externalization, rp_speech and rp_display) and a Windows Phone 7.8
app which is running on the attached phone. Each of these software components is briefly discussed below.

State externalization (rp_state_externalization) The state externalization node (rp_state_externalization) sub-
scribes to the status outputs from all major nodes in Lukes ROS graph, in particular, the lomotion
(rp_locomotion), head tracking (rp_head_tracking), framing (rp_framing) and photography process control
(rp_autonomous_photography) nodes.

Each of these nodes can be in one of the following states:

Slocomotion € {NORMAL, PROCESSING_BUMPER_EVENT},
Shead tracking € { GATHERING_FACE_HUE_DATA, DETECTING_HEADS, TRACKING_HEADS},
Sfaming € {NO_FRAME, FRAME_OUT_OF_BOUNDS, FRAME_TOO_SMALL, FRAMED},
S auton. photography € {AVOIDING_OBSTACLES, TAKING_PICTURE, UPLOADING_PICTURE, FRAMING_PICTURE}.

Choose the message from suita-
ble ones uniformly at random

> Locomotion > Head tracking >Aut0n0mou5 pho- > .

Framing state
state state tography state
rp/loco- /rp/head_ /rp/autofomous_ /rp/framing/ \]/ \]/
motion/state tracki{[;/state photography/state frame Set the display et e veel
\l/ message text message text

Look up message text for dis-

play and vocalization in the Text message > Vocal message fext >
phrase book based on indivi- for display for speech synthesis

dual node states. /rp/state_exfernalization/ /rp/state_externalization/

text_( nessage vocal Inessage

[More than one suitable message available] %

[Exactly one message available]

Figure 4.24: A simplified UML activity diagram of the state externalization (rp_state_externalization) ROS node.
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In order to produce the robots state messages (which are later vocalized/displayed by rp_speech and
rp_display nodes) the state externalization node uses a table of pre-defined text messages, indexed by tuples
(Slocomotions Shead trackings Sframings Sauton. photography)- 1f the table contains more than one message for a given tuple,
then the message to be produced is chosen uniformly at random from the matching messages. An excerpt from

this table is shown in listing @ in appendix .

After the message texts are chosen for the display/synthesized audio messages, they are published via /rp/s-
tate_externalization/text_message and /rp/state_externalization/vocal_message topics (as illustrated in figure ) The
nodes responsible for message display and vocalization subscribe to these topics and produce the appropriate outputs,

as described below.

Message display (rp_display) The message display node (rp_display) acts as a proxy between the state external-
ization node and the display attached to the robot’s frame. To provide OS and device independence for the physical
display, this node simply creates a TCP server and sends new messages received from the state externalization node

to the TCP client (as illustrated in figure )

Connect to rp_display node
over TCP

Listen for Received message to dis-
> Message to display from incoming messages play from rp_display node

state externalization node
TCP

/rp/state_externaliation/text_message

[Display client [Display client
is not cdnnected] is confected]
[Message containg only text]
A hyperlink i t in thy
Open TCP socket and Client connected [A hyperlink s prepent in the message]
wait for the client

over§liC Generate QR code for the link
\I/ \I/ and remove the link from the text

( Render generated QR code )

Text message > \]/
for display Render received text message
TCP filling all available screen space <~
@

[App is not closed]
Figure 4.25: A simplified UML activity diagram of the mes- [App Flosed]

sage display (rp_display) ROS node.

Figure 4.26: A simplified UML activity diagram of message
display Windows Phone 7.8 app.

In the current implementation, an HTC HD7 phone is used to show the received messages. This phone has a 4.3
inch, 480 x 800 pixel LCD display, and is running Windows Phone (WP) 7.8 operating system. To show the
messages generated by rp_state_externalization node, a basic message display WP OS app is written. Essentially this
app connects to the rp_display node over TCP and renders received text messages in full-screen mode. If a hyperlink
is present within the received text message then this app also generates and renders a QR (Quick Response) code.
This makes it easier for the humans in the robot’s vicinity to follow this link, since any modern phone can use the

phone’s camera to automatically read QR codes.

A couple of screenshots of this app are shown in figure and its basic UML activity diagram is shown in figure

.
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Figure 4.27: Sample screenshots of the robots display app \I/ \I/
for Windows Phone 7.8. Image a) shows the configuration (\g

screen which allows this app to connect to the rp_display

node, image b) shows the received and rendered text mes-
sage, and image ¢) shows both the received text message

and the rendered QR hyperlink code.

Figure 4.28: A simplified UML activity diagram of the
message vocalization (rp_speech) ROS node.

Message vocalization (rp_speech) To vocalize the text messages sent by rp_externalization node, the rp_speech
node uses an open-source eSpeak (Duddington, 2006) speech synthesis engine, which in turn is configured to use

a formantd synthesis based approach as described by Klatt (1980).

In essence, Klatt’s voice synthesizer works in two stages: first of all, two parallel harmonic signals are produced,
which simulate the vibration of the vocal chords. Secondly, a cascade of low pass, resonance/anti-resonance, additive
and other digital filters is applied to simulate the rest of the vocal tract transfer function, such that the resulting
waveform resembles human speech (see Klatq (1980) for more details). Since this method does not need a database
of speech samples and uses computationally cheap digital signal filters, the resulting text-to-speech engine is both
memory and CPU efficient, making it highly appropriate for the use in a mobile robot.

The actual rp_speech node acts as a thin wrapper between the eSpeak engine and the rest of Luke’s ROS graph (al-
though in the current implementation only the rp_state_externalization uses this node to generate vocal outputs). In
particular, the rp_speech node simply subscribes to the messages published in /rp/state_externalization/vocal_message

topic and forwards them to the libespeak API, as visually summarized in figure .

4.2.4 Computational resource usage of individual nodes

In order to illustrate how CPU and memory resources are used by the individual Luke’s nodes, their usage statistics
were gathered over a ten minute sequence of Luke’s operation. These cumulative statistics are presented in figures

and .
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Figure 4.29: Cumulative CPU usage of Luke’s ROS nodes over the ten minute test deployment.

SFan (1960) defines formants as “the spectral peaks of the sound spectrum of the voice”.
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Figure 4.30: Cumulative memory usage of Luke’s ROS nodes over the ten minute test deployment.

As can be seen from these charts, obstacle detection/avoidance (rp_obstacle_avoidance) and head detection/tracking
(rp_head_tracking) nodes use the largest amount of the computational resources. Furthermore, the “photograph
framing”/“random wandering” cycles can also be clearly seen, especially from the CPU usage diagram, since during
the “random wandering” cycle the head detection/tracking node is disabled. The memory usage diagram also
illustrates that the memory usage remains relatively constant over this time period, indicating that the nodes do
not have memory leaks.

The qualitative performance of the robot photographer is described in the following chapter, which discusses Luke’s
deployment in a real-world event and thoroughly evaluates the quality of the pictures taken.



Chapter 5

Insights from Robot Photographer’s Deployment in Real-World

This chapter summarizes the experiences from Luke’s deployment in an unstructured real-world event and provides statistical
evaluation of the pictures taken. The obtained results are compared with the earlier autonomous robot photographer

approaches.

5.1 Autonomous robot photographer deployment at an open-day event

In June 2013 the robot has been deployed at an open-day event for prospective CS undergraduate students in the
Department of Computer Science, University of Oxford. The event was running for two consecutive days and was
attended by more than four hundred prospective students, parents and teachers.

The programme of each day was divided into multiple half-an-hour talks, interview and Q&A sessions, given in
lecture theatres and computing rooms. During the occasional fifteen minute breaks between these events, the

attendees would come out and mingle in the main “atrium” area (shown in figure Ell) The robot photographer

would be active during these breaks, autonomously taking pictures in the unstructured environment.

Figure 5.1: An autonomous robot photographer Luke “in-action” at the open day event in the Department of Computer
Science, University of Oxford.

For its successful operation, Luke had to avoid both static obstacles (chairs, tables, presentation stands, walls, ezc.)
and dynamic obstacles (viz. attendees, randomly milling about). In order to ensure Luke’s safe operation, its linear
velocity was limited to 10 cm/s, and the angular velocity was limited to 0.5 rad/s. At this speed, the obstacle

detection and avoidance method described in sections B.3.2 and §.2.3.1 performed flawlessly, allowing Luke to

avoid any collisions during its operation. The only times when human supervision was required were when Luke
was about to wander out into the corridors leading away from the atrium. In these cases Luke was directed back to
the atrium by blocking its path and forcing him to turn around; such interventions were required around once in
every thirty minutes of Luke’s operation.

Due to its relatively slow speed (and noisiness of the environment, which was burying Luke’s audio messages), the
robot often was able to take candid photographs of the attendees while remaining unnoticed (just like a human event
photographer would). However, some attendees (particularly older parents) indicated that they found the presence
of the robot somewhat unsettling or creepy because of its ability to track people and navigate the environment
autonomously. This could have been caused by the fact that Luke has a very limited set of reactive interaction
skills with humans: most of the times the HRI was limited to the attendees blocking the robot’s path, and Luke

92
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changing his driving direction to avoid them. At this point, the attendees would notice the message on Luke’s
status display that he is “looking around for good picture locations” (or similar), and leave him alone.

In order to detect and track people based on RGB-D data, Luke was using the methods described in sections
and . After some brief initial testing of the KLR and Bayesian skin classifiers (described in section ),
the latter was found to be performing better in this particular environment and was used for the remainder of Luke’s
two-day deployment.

Over the total ten and a half hour period of Luke’s presence at the open-days, the robot spent three hours and
thirty-seven minutes actively taking pictures (viz. during the breaks between various events). In total Luke took
103 pictures, approximately one picture every two minutes. The breakdown of these statistics for each day is shown
in table El]

Day Total robots Total duration of Number of Average time
presence time! robots activity!  photos taken b/t pictures!

Day 1 05:26:25 02:11:34 57 00:02:18

Day 2 05:10:16 01:25:59 46 00:01:52

Total 10:36:41 03:37:33 103 00:02:07

U In hb:mm:ss format.

Table 5.1: Statistics of Luke’s deployment at an open-day event.

The quality of the pictures was quantitatively evaluated on a five-point Likert scale (Likert, 1932), and compared

to the results obtained by earlier robot photographers, as presented in the following section.

5.1.1 Evaluation of pictures taken by the robot

In order to quantitatively evaluate the quality of the pictures taken by Luke, sixteen people (unrelated to the project)
were asked to evaluate all 103 pictures using an on-line photo rating tool, developed specifically for this project.
This tool, and the methodology of the rating collection experiment is described below.

5.1.1.1 On-line rating tool for fast photo rating

To streamline the process of photograph rating, an online tool was implemented (shown in figure @) This tool
enabled participants to rate and navigate through Luke’s photos using simple keyboard shortcutsll.

When participants opened the photo rating web page, the tool displayed two animations explaining the keyboard
shortcuts for assigning photo ratings (viz. keyboard keys “1”-“5”) and the shortcuts for navigation between pictures
(viz. left-arrow key “4+—” to go back to the previous picture and right-arrow key “—” to proceed to the next picture

after leaving a rating).

After this introduction the participants were asked to rate each picture that Luke took on the following Likert
scale:

Very bad (1), Bad (2), Neutral (3), Good (4), Very good (5).

To reduce the combined perceptual correlations between the neighbouring photographs, all pictures were shown
in a randomized order for each participant of the experiment.

' Obviously, participants could also use the mouse to perform the same actions.
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Instructions (1 of 2)

Figure 5.2: Screenshots of the developed tool for photo rating on the five-point Likert scale.

The tool itself was developed using an industry-standard LAMP stack (Linux OS, Apache HTTP server, MySQL
DBMS and PHP programming language). The front-end UI was powered by the open-source Bootstrap framework
(, ) written in JavaScript, CSS and HTML. A MySQL database was used for the storage of ratings in

the back-end, and the middle layer connecting these components was programmed using PHP.

Using this tool a set of 1,648 ratings was collected (i.e. sixteen ratings on the five-point Likert scale for each

picture).

These ratings are thoroughly analysed and compared to the results obtained by other autonomous robot photog-
rapher approaches in the following sections, starting with the examination of reliability of the collected ratings,
described below.

5.1.1.2 Inter-rater agreement measurement

To better understand how reliable are the collected ratings, two statistical methods were applied: the weighted

Cohen’s kappa statistic (, ), and a simple percentage agreement. Each of these methods are briefly

described below.

Weighted Cohen’s kappa To measure the inter-rater agreement while discounting the agreement between raters
that occurs simply by chance, a weighted Cohen’s kappa statistic can be used. This statistic is calculated in the
following way.

Let X = [z; j] be the matrix of observed disagreements between the two judges, where x; ; counts the number of
times when the first judge gave the rating 7 and the second judge gave the rating j. Furthermore, let W = [w; ;]
be the quadratic penalty matrix for the disagreement when the first judge gives rating ¢ and the second judge gives
rating 7, with w; j = (i — j)2.

As described by , this allows the ratings on the Likert scale to be treated as ordinal data (i.e. without the
assumption that they are spaced equidistantly), while at the same time accounting for partial disagreements between
the judges on the same picture.

In order to take into consideration the amount of agreement between the judges which would be expected by chance,
let &; = [Z; )" be the vector of cumulative counts when judge i gave rating 7. Then the expected disagreement
matrix M = [m; ;] can be defined as

>

.’2'171‘ X i'QJ‘
103

1,2
211

mij = X g5 =



95 CHAPTER 5. INSIGHTS FROM ROBOT PHOTOGRAPHER’S DEPLOYMENT IN REAL-WORLD

where ||Z1]]1 = Z?:l Z14; = 103 is an Ly norm of the cumulative rating count vector &1 for the total of 103
pictures.

Finally, the weighted Cohen’s kappa statistic can be calculated as

5 5
D e Djet TijWij

5 5 )
D Dt M Wi

where £ = 1 indicates an ideal agreement and x = 0 indicates an agreement which could be completely justified

k=1-—

by chance. The Cohen’s kappa statistics for each ranker pair are shown in figure @

Percentage agreement Another statistic calculated for the obtained ratings involved treating the Likert scale as
an interval scale (i.e. assuming that besides the implicit rank order between the response categories, the intervals
between them are also equal) E To calculate the interval-based agreement between two judges 7 and 7, their picture
ratings are assembled into 103-dimensional vectors r; and r;. Then the cumulative disagreement between these
rating vectors can be calculated as ||r; — 7;||1. Since the maximum cumulative disagreement ||7ma]|1 is equal to

103 x (5 — 1) = 412, the percentage agreement between judges ¢ and j can be calculated as

||7“z'—7‘j||1) ( IITi—?“j||1>
100x (1= ) g0 % (1= 4L
( |17 max] |1 412

These percentage agreements between each pair of judges are reported in figure .

=1 — N o - w o
— N m e m e s e oo 2D ¥ moS w2
g 8 8 8 8 8 8 88 8 8 8 &8 g &8 8
t £ & § g £ % £ § & & ¢ o5 & & %
A AT - - A A
Rater 1 8% 76% 78% 79% 78% 75% 72% 81% 74% Rater 1

Rater 2 67% 68% 69% 69% 63% 69% 71% 67% 79% 70% 76% 76% 79%
Rater 3 80% 81% 80% 80% 73% 73% 83% 65% 80% 77%
Rater 4 79% 83% 78% 72% 79% 66% 80% 81%
Rater 5 75% 80% 80% 70% 75% 66% 81% 81%
Rater 6 80% 86% 75% 74% [87% 69% 80% 80% Rater 6
Rater 7 77% 80% 77% 70% 79% 62% 77% 75% Rater 7
Rater 8 76% 72% 73% 79% 69% 75% 78% 75%| Rater 8
Rater 9 76% 74% 80% 71% 81% 83% 78% Rater 9

0.18 0.17 0.18 0.13 | Rater 10 73% 76% 66% 75% 75% 72% | Rater 10
0.20 | Rater 11

75% 75% 77% 80% 62% | Rater 11

Rater 2
Rater 3
Rater 4
Rater 5

Rater 12 69% (83% 82% 79%| Rater 12
m Rater 13 72% 76% 55%)| Rater 13
Rater 14 - 72% | Rater 14
Rater 15 69% | Rater 15

Rater 16 Rater 16

Figure 5.3: The inter-rater agreement coefficients mea-
sured using ’s () weighted kappa method (with
quadratic weights). The agreement’s strength is indicated by
the blue colour’s intensity (where an agreement arising to-
tally by chance would be indicated by £ = 0 and would be

coloured in white).

Figure 5.4: The inter-rater agreement percentages between
each pair of judges (raters), calculated using the complements
of the cumulative disagreement and a maximum possible dis-
agreement ratios. An ideal agreement would be indicated by
100% (coloured in dark orange), and a complete disagree-
ment would be indicated by 0% (coloured in white).

Since both metrics indicate the reliability of collected ratings, these ratings are compared to the ones obtained by

autonomous robot photographers of lByers et all (|2003|) and |Ahn et all (|20061), as described below.

*Note that both intervalist/ordinalist views of the Likert scales and the applicability of i arametric/non-parametric statistical analysis

techniques are somewhat controversial (e.g. see the scientific debates in research journals by

uiceor (2009, Cariio and e (008)

rma ()) The validity of each view-point largely depends on the underlying data that is being categorized by these scales, type of
postprocessing performed on the collected responses (e.g. averaged or summed responses are easier to justify as being interval-like), overall
size of the surveys and so on. The evaluation performed in this thesis considers the obtained results from both perspectives.
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5.1.1.3 Comparison to ratings obtained by other robot photographers

Most of the robot photographer development approaches described in the literature and summmarized in chapter
H either did not provide thorough quantitative evaluations of the obtained photographs (including Campbell and
Pillaj (2005), Kim et al. (2010) and Shirakyan et al. (2012)) or the approaches were not directly comparable to the
one used in this project (e.g. the robot photographer developed by Gadde and Karlapalem (2011) was stationary and
took pictures only of static scenes).

For this reason, the results obtained by Luke are compared to the results obtained in the approaches described by
Byers et al! (2003) and Ahn et al. (2006), who provided the quantitative evaluations of the pictures that their robots
took on the Likert scales.

To that end, the comparison of photograph proportions in each of the rating categories for each robot photographer
approach are given in table @ and figure @, and the statistical summary of the results (using both-parametric
and non-parametric statistics) is provided in table p.3.

Authors/Ratings Very bad (1) Bad (2) Neutral (3) Good (4) Very good (5)

Byers et al. (2003) 18.0% 25.0% 28.0% 20.0% 9.0%
Ahn et al/ (2006) 6.7% 23.5% 32.7% 26.0% 11.1%
Zabarauskas (2013)* 4.7% 14.6% 25.5% 33.5% 21.7%

T Ahn et al] used the following Likert scale: “Very poor”, “Poor”, “Normal”, “Nice”, “Very nice’.
¥ Work completed and presented in this dissertation.

Table 5.2: Proportion of pictures in each of the rating categories in three different robot photographer approaches.

% Byers etal. (2003) = Ahnetal. (2006) [ Zabarauskas (2013) Byers et al. (2003)
32.7% 33.5% ‘ ‘ ‘ r/’ ‘
28.09 p
25.0% o, % 25.5% 26.0% Ahn et al. (2006) J
=7 20.0% 21.7% | L ‘
18.0% ’ -
. 14.6% Zabarauskas (2013)
V 0 abarauskas
% 9.0%1'1 " | ‘ ‘ ‘
/ 6.7%, -
/74.7 %
/ = 0%  20%  40%  60%  80%  100%
Very bad (1) Bad (2) Neutral (3) Good (4) Very good (5) M Very bad (1) Bad (2) Neutral (3) Good (4) Very good (5)

Figure 5.5: Visual summary of the proportion of pictures in each of the rating categories in three different robot photographer
approaches.

As shown in table @ and figure @, more than half of all pictures taken by Luke were evaluated by humans as being
either “good” or “very good”, and more than 80% were evaluated as “neutral” or better, significantly outperforming
Byers et al/s and Ahn et al/s robots.

To verify the statistical significance of the obtained results, both parametric and non-parametric methods are em-
ployed to reject the hypothesis that the real rating means (and therefore the underlying qualities of the pictures
taken by each robot) are equivalent, and the differences observed in the individual rating sets (as summarized in

table @/ figure @) arise purely by chance.

First, a parametric test based on one-way analysis of variance (ANOVA, Fisher (1924)) is performed on all three
rating sets (viz. the ones obtained by Byers et al| (2003), Ahn et al) (2006) and Zabarauskas (2013)) simultane-
ously.

This approach is slightly controversial because some researchers consider Likert scales only as ordinal data. Such
data should therefore be analysed with non-parametric methods, while ANOVA assumes normal distribution of
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Authors Central tendency Variability
Mean Median Mode Standard ~ Inter-quartile
deviation range
Byers et al| (2003)"  2.77 Good (3) Good (3) 1.22 2
Ahn et al| (2006) 3.11 Good (3) Good (3) 1.09 2
Zabarauskas (2013)  3.53 Very good (4) Very good (4) 1.12 1

T Since Byers et al| mention that around 2,000 photographs were evaluated (without specifying the exact number), the
comparisons in the following sections assume an exact rating count of 2,000.

Table 5.3: Comparison of parametric and non-parametric statistics of the pictures taken by different robot photographers.

responses and thus it is a parametric technique. However, more recent literature argues for the applicability of such
techniques when analysing Likert scale responses. For example, Carifio and Perla (2008) state that “iz is perfectly
appropriate to summarise the ratings generated from Likert scales using means and standard deviations, and it is perfectly
appropriate to use parametric techniques like Analysis of Variance to analyse Likert scales.”

Another frequent criticism of ANOVA’s use for Likert scale analysis is that while the original ANOVA test assumes
the normality of the response variable distribution, the Likert scale responses tend to be skewed. However, as noted
by Kirk (1995) (and others), ANOVA is relatively robust w.r.z violations of this assumption. This is also suggested
by Norman (2010), who counters these two common criticisms by stating that “parametric statistics can be used with
Likert data, [...] and with non-normal assumptions, with no fear of “coming to the wrong conclusion.”

In the light of these arguments, the details of the ANOVA method (within the context of multiple sets of picture
ratings) are described below.

A one-way analysis of variance (ANOVA) In ANOVA test, the real quality of the pictures taken by each robot is
modelled by an underlying random variable, where individual samples of this underlying variable (with an associated
sampling error) are obtained by rating pictures that the robot took. (To that end, it is assumed that both the judges
and the ratings are independent from each other, i.e. the rating of a given picture by one judge does not affect another
judge’s rating of the same picture in any way, and, similarly, that for a given judge, rating one picture does not
affect the rating for another picture.) Then, the variance between the mean ratings of each set is compared to the
variance between individual ratings. If the ratio of these variances is high enough (i.e. unlikely to occur by chance),
then ANOVA test considers that photo ratings must have come from distributions which have sufhiciently different
mean ratings. This implies that if ANOVA’s null hypothesis of equal underlying population means is rejected, then
there is statistical difference between the real picture quality for each of the robots.

In particular, ANOVA test for photo ratings works as follows. Let z; ; be the observed rating for photo j in the

rating set 7 (where each set contains n; ratings and there are S sets in total). Furthermore, let the unbiased estimate
- S j i . . . . . (@i, =)

of the mean of rating set i be Z; = Zjn =7 and the unbiased estimate of rating set s variance be s? = Zﬂn’%

1 1

=

=242 be the unbiased estimate for the mean of combined rating sets, obtained by pooling

Similarly, let =
together ratings from all sets (where N = ). n;). Then the “sum of squares” measure between the rating sets can

be calculated as

_ N2
SSbetween = § nz(xz - I) 5
7
and the “sum of squares” measure within the rating sets can be computed as

SSWithin = Z 822(”% - 1)
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The F'-score for the ANOVA test can be calculated as a ratio of the mean squares between and within the rating
sets (where a mean square is defined as the sum of squares divided by its degrees of freedom), namely:

_ (7. — 7)2
F = SSbetween/dfbetween _ (N S) Zz nl(xl IE) (51)

S Syichin/ A wichin (S—1) Zz 312(7% -1) ’

where dfpeween = S — 1 and df yighin = N — 5.

To be able to reject the null hypothesis (viz. the equality of mean ratings for all S rating sets), F'-score has to exceed
the critical value threshold F éfit g (@) = F it v_g(a) for a desired significance level o, where FiE&™, . o is
the inverse of a cumulative distribution function (CDF) of F' _distributionfl with S — 1 and N — § degrees of
freedom.

In order for ANOVA test to be applicable (besides the independence assumption described above), the responses
ideally should be normally distributed. While it is not obvious whether the rating sets by Zabarauskas (2013),
Ahn et al| (2006) and Byers et al) (2003) satisfy this condition, they are also not extremely skewed (the kurtosis
of each set respectively is —0.614, —0.71 and —0.92; it can also be seen by visual inspection of the left half of
figure @) Due to the fact that ANOVA test is not extremely sensitive to non-normality, it is still considered to
be applicable.

However, a standard ANOVA test also relies on homoscedasticityg of the rating sets. Since the variances of the
rating sets collected by Zabarauskas (2013), Ahn et al. (2006) and Byers et al| (2003) are 1.261, 1.198 and 1.478
respectively, it is unlikely that the homoscedasticity condition holds in this situation. To mitigate this problem, an
ANOVA-based F* test by Brown and Forsythq (1974a) s used, which is designed for sample sets with non-equal
variance (and is less sensitive to non-normality than the regular ANOVA test). This test is described in more detail
below.

Brown-Forsythe F™* test To test whether all three rating sets have equal means, given that they have unequal
variances, the Brown and Forsythd (1974a) test redefines the F'-score from the equation @ as

SSbetween _ Zz 1 (:Z‘l - j)2

F* = =
Zisg(l_%) Zisf(l_%)’

(5.2)

where the critical value threshold F’ 5‘:{‘1 dfo () for a desired significance level « is obtained from the same CDF
inverse of F'-distribution. Here the degrees of freedom within the rating sets df iy are derived from Satterthwaite’s
(1941) equation as

-1
2 (1— %) s?
c
= (£555) i o=
Running the F™* test on the rating sets obtained by Byers et al| (2003), Ahn et al. (2006) and Zabarauskas (2013)
produces an F* score of 199.84. For the p-value of 0.0001, the critical value F55, 1(0.9999) = 9.23. Since
F* > F5151(0.9999), the probability that the null hypothesis of equal means for these rating sets holds is
smaller than 0.0001, and hence it is rejected under this level of significance.

3Also known as Fisher-Snedecor distribution.

“Also known as the homogeneity/equality of variances.

SF* test is used for the equality of means and should not be confused with a different Brown and Forsythq (1974b) test for the equality
of variances.
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Due to some degree of controversiality regarding the use of ANOVA with data obtained using Likert scales, the
same hypothesis is tested using a non-parametric version of one-way analysis of variance by Kruskal and Wallis
(1952). This test is described below in more detail.

Kruskal-Wallis one-way analysis of variance In contrast to the original ANOVA method (as described above), the
test proposed by Kruskal and Wallig (1952) does not assume an underlying normal distribution or the homogeneity
of variances. It works in the following way.

First, all N ratings from all rating sets are pooled together and ranked, yielding ranks r; ; where j is a rating

from the rating set ¢. If k ratings are tied for the ranks n + 1,...,n + k, they are assigned the average rank
k .

§ iz (n+i) =n+ L

Z] i,3 ZijT'J

be the average rank in the rating set i and ¥ = == N ‘H be the average rank of all ratings

Letr; =
in the pooled rating set. Then the equation (El]) is re-defined to use the ranks of the ratings (instead of the actual
ratings) as

K= (N — 1yl =) (5.3)

Zi,j(ri,j —7)?
Since K approximately follows the chi-squared distribution with S — 1 degrees of freedom (i.e. K ~ x%_;, where
S is the number of rating sets), the obtained K -score can be used to reject the null hypothesis (viz. the equality of
mean ranks of ratings for all S rating sets) if it exceeds the critical value Kg™, () for a desired significance level
«a. Here K gﬁ 1 is the inverse CDF for X%—l distribution.

Performing this test on Byers et al/s, Ahn et al.’s and Zabarauskas’ rating sets results in a K score of 353.12. For
the p-value of 0.0001, the critical value K§7(0.9999) = 18.42. Since K > K§7(0.9999), the null hypothesis of

equal mean ranks of ratings is also rejected using this non-parametric method (as summarized in table )

Statistical test Test score Critical score Null hypothesis Decision
(p = .0001)

Parametric F*=199.8352  F“t=9.2305 “Means of underlying rating popula- ~ Rejected

(Brown-Forsythe) tions are equal.”

Non-parametric K =353.1212 K" =18.4207 “Mean ranks of underlying rating Rejected

(Kruskal-Wallis) populations are equal.”

Table 5.4: Parametric and non-parametric statistical test results for the significance of the similarity between Byers et al.
(2003), Ahn et al) (2006) and Zabarauskas (2013) rating sets.

Given these results, the following section examines each rating set pair individually to determine which of the robot
photographer approaches produce statistically significant differences in picture quality.

5.1.1.4 Post-hoc testing for significant differences between rating set pairs

Since both parametric and non-parametric tests confirm statistically significant differences between the rating set
means simultaneously (at p = .0001 confidence level), but they do not specify whether (and which) individual
pairs of rating sets come from different underlying distributions, a number of pair-wise post-hoc tests are per-
formed.
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First of all, each pair of rating sets is compared using a version of parametric Student’s ¢-test (Gosset, 1908). This
test can be used to reject the null hypothesis that the underlying populations from which the two rating sets have
been sampled actually have equal mean ratings, and the observed differences arise purely by chance. However, this
test also assumes homoscedasticity, which (as discussed) above cannot be easily shown for the rating sets. While
it is relatively insensitive to violations of this assumption when the sample sizes are equal, it is not very robust in
presence of unequal variances and unequal sample sizes. Welch (1947) proposes a version of Student’s ¢-test, which
is insensitive to unequal variances even for different-size samples. This version of the ¢-test is described in more
detail below.

Welch’s t-test To check whether unequal means observed between individual pairs of rating sets could have
arisen by chance, the modified ¢-test (as described by Welch (1947)) is employed. Besides the assumption for
rating independence within/between rating sets, this test also requires that the means of the rating sets would be
distributed normally. Since each set contains more than a 1,000 pictures, it is assumed that this requirement is
satisfied by the central limit theorem. Furthermore, as described above, this test is robust to unequal variances and
differing sample sizes. It works in the following way.

>, Tij (@i j—xi)?

As earlier, let 7; = =2—* and S? = P be the unbiased estimates of rating set ¢ mean/variance

1 1
respectively, where n; is the size of rating set 4. Then the ¢-score, defined as

_ T1 — X9
- V(83 /n1) + (s2/n2) (5.4)

is distributed following the Student’s ¢ distribution with

2 3’
ni n2

(&) /m =1+ (2) /- 1)

Y= (5.5)

degrees of freedom. (Here v is approximated using the Welch-Satterthwaite equation, since it arises from a linear
combination of individual rating set variances.)

After the t-scores are obtained for each of the rating set pairs, they are individually compared to the critical
value t&(qv) at the significance level o, where t&t is calculated from the inverse CDF F ! of the Student’s
t-distribution.

Since the null hypothesis assumes that the real means of the underlying rating populations are equal, the rejection
of this hypothesis could come from either “tail” of the symmetrical ¢-probability distribution, hence the critical
value for a specified statistical significance level « is calculated from

Pr,(t| <t = o <

1 — 2P, (|t| > tT) = a &

tcrit:F_l a+1 .
14 14 2

To avoid inflating the Type I error by performing repeated null hypotheses tests, the Bonferroni correction (Dunn,

1961) is used. In particular, since three tests are required to check each pair of the rating sets for the equality of their

SRejecting the null hypothesis when it in fact holds.
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means, the p-value of 0.0001 (as used above) is discounted by a factor of three, viz. p = 0.0001/3 = 0.0000333
and thus v = 99.9967%. For this level of statistical significance, Welch’s ¢-test rejects the null hypotheses of mean
equality for each of the rating set pairs, as summarized in table @

Since Welch’s ¢t-test interprets the Likert scales as interval data (which is somewhat controversial, as discussed

above), the same post-hoc tests are repeated using a non-parametric analogue of ¢-test as proposed by Mann and

Whitney (1947).

Mann-Whitney U testl To compare the rating set pairs using the non-parametric techniques, the test described
by Mann and Whitney| (1947) is used. In contrast to Welch’s ¢-test, this test does not assume interval data (i.e. it
can be straight away applied to ordinal data, like Likert scales).

Mann-Whitney’s U test can be used to refute similar null hypothesis as the Welch’s ¢-test (viz. the assumption that
the two rating sets containing n; and ng ratings come from the same distribution) in the following way.

First of all, n; 4+ ng ratings from both rating sets are ranked collectively, yielding ranks r; ; for each rating
j € {1,...,n;} from each rating set ¢ € {1,2}. Tied ranks are assigned the average rank, like in Kruskal-Wallis
method above. Let 7; = ) i Tig be sum of all ranks in rating set ¢. Then the U-score can be calculated as

1 1
U:min{n1n2+n1(nl+ ) na(ng + )_TQ}'

5 -7y, ning + 5

. . / 1 .
Given that for the large 11, ny values U ~ N (p1, 0), with p = "2 g = %, the critical value

U“(«) for null hypothesis rejection with the significance level a can be found using the inverse CDF of the normal
distribution with parameters p and o, i.e. U (o) = @;710(a). Under the same Bonferroni correction, p-value of
0.0001/3 is chosen for each test of a rating set pair. For this level of statistical significance, Mann-Whitney U test

also rejects the “equal distribution” null hypotheses for each of rating set pairs, as summarized in table @

Statistical test Rating  set Test score Critical score Null hypothesis Decision
pair (p = .000033)
Zabarauskas, t =9.4661 it = 4.1578 Rejected
Ahn et al.
_ . “Means of underlying
Parametric Zabarauskas, t = 19.543 1t = 4.1547 . . Rejected
) rating populations
(Welchs t-test)  Byers et al. are equal.”
Ahn et all, = 7.8988 it = 4.1576 Rejected
Byers et al.
Zabarauskas, U = 675343  U“" = 778807.65 Rejected
Ahn et al.
Non-parametric 4 “Underlying rating
. Zabarauskas, U = 1079750 U“" =1521749.9 ; Rejected
(Mann-Whitney B | populations have
U -test) yers et a similar distribution.”
Ahn et al, U =872000 U™ =948443.07 Rejected
Byers et al.

Table 5.5: Parametric and non-parametric statistical test results for the significance of the pairwise similarity between Byers
et al| (2003), Ahn et al) (2006) and Zabarauskas (2013) rating sets.

7 Also known as Wilcoxon rank-sum test.



5.2. SUMMARY 102

5.2 Summary

In this chapter, Luke’s deployment at an open-day event in the Department of Computer Science, University of
Oxford was described. During the three and a half hours of active photo shooting, the robot took 103 pictures, i.e.
roughly one picture every two minutes. For evaluation, each of these pictures were rated by sixteen judges unrelated
to the project. More than half of the pictures were rated as being “good (4)” or “very good (5)” on a five-point
Likert scale, markedly exceeding the results reported by lByers et all (IZOO?;I) and lAhn et all (lZOOél) To confirm the
statistical significance of these findings, both parametric (one-way ANOVA and pairwise Welch’s ¢-tests) and non-

parametric measures (Kruskal-Wallis and pair-wise Mann-Whitney U -tests) were taken. At p = .0001 significance
level, both types of tests indicated statistically significant differences between the obtained results.

Very good (5)

Very bad (1)

Figure 5.6: Luke’s photographs with the largest rating count in each of the categories.



Chapter 6

Conclusions and Proposals for Further Research

This final chapter summarizes the work completed in this dissertation, sums up the contributions of this thesis to the field of
autonomous robot photography, and outlines the potential directions for future research.

6.1 Summary of completed work

As discussed in Chapter 1, autonomous robot photographers serve as excellent low-cost robotics research platforms,
encompassing difficult multidisciplinary challenges. However, all such systems described in the scientific literature
within 2003-2013 (since the earliest robot photographer, to the present day, as summarized in Chapter 2) rely
on RGB cameras for their vision and laser range/infrared/ultrasound sensors for obstacle detection and avoidance.
Each of these devices have their own disadvantages w.r.z. low-cost and ubiquitous RGB-D sensors (as summarized
in Chapter 3), and a number of autonomous robot systems, ranging from robotic wheelchairs (Wu et al., 2013) to
home-service “robot butlers” (Stiickler and Steffens, 2011), have already adopted RGB-D sensors for their vision
systems. It was these recent developments of RGB-D sensors and their applications to different autonomous robots
that inspired the investigation into how such sensors could be used to improve the state-of-the-art performance of

autonomous robot photographers.

This project proposed RGB data-based solutions for both of the main challenges of robot photographers, viz.
human subject detection/tracking and obstacle detection/avoidance. To make an informed decision, an extensive
survey of both approaches based on RGB-D (separate and combined) data has been performed and presented
in Chapter 3. The following solutions have been proposed based on their applicability to RGB-D data, their
computational efhiciency, keeping in mind the processing power and energy constraints imposed by mobile robotics,
and their feasibility for implementation during the projects timeframe.

6.1.1 Contributions to the field of autonomous robot photography

Human subject detection/tracking For human subject detection in depth data, this thesis proposed an extension
of Garstka and Peters’ (2011) knowledge-based head localization method. This extension enabled simultaneous

multiple head detection in depth data, as described in section .

To increase the accuracy of this approach, this thesis also proposed a novel method for detected “candidate” head
verification using RGB data. In particular, this method employed a Viola and Jones (2001) face detector cascade to
gather a small set of skin/background training examples for every new environment that the robot was deployed in.
It then used these examples to train the discriminative logistic regression classifier with RBF kernel on-the-spot,

as discussed in section .

This thesis also presented and incorporated an already existing skin-classification approach for depth-based head
detection verification using RGB data. In this approach a histogram-based Bayesian skin classifier was trained
on a large-scale supervised data set, containing almost a billion of skin/non-skin training examples, following the
description of Jones and Rehg (2002).

Lastly, to increase the efficiency of the proposed RGB-D head detection approach and to reduce the impact of noise
in the sensor’s RGB-D stream, this thesis also proposed a new depth-based extension of the continuously-adaptive
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mean-shift tracker (Bradski, 1998), yielding an efficient method of tracking detected human heads in depth data
over a sequence of input frames (see section )

Obstacle detection To enable the robot photographer’s “random wandering” mode, Boucher’s (2012) depth-based
obstacle detection and avoidance method was chosen. This method was combined with Peasley and Birchfield’s
(2013) heuristic for close-range obstacle avoidance. With only minor modifications (like the incorporation of the
accelerometer’s data from the Kinect sensor, and feedback from the bumpers on the robot’s base) this combined
method proved to be robust and efficient enough to be used in an unstructured environment, under a flat ground

assumption.

6.1.2 Implementation and evaluation of the proposed methods

The methods described above were implemented within an open-source Robot Operating System framework
(Quigley et ali, 2009), based on Brooks’ (1986) behaviour-based architectural design (as thoroughly described
in Chapter 4), achieving sufficient performance for real-time applications on modest configuration on-board net-

books/laptops/ PCll.

To test this software in real-world situations, a physical robot has been built using an open-source hardware
platform (available off-the-shelf, or as a construction kit), a simple point-and-shoot photographic camera and a
low-cost RGB-D Microsoft Kinect sensor. Only affordable and widely available (or interchangeable) parts were
used in robot’s construction to promote reproducibility of the results and facilitate research on autonomous mobile

robots both within and outside academia.

The developed autonomous photographer robot “Luke” has been deployed in an unstructured open-day event, as
described in Chapter 5. During this event, Luke took more than a hundred pictures, shooting a new photograph
roughly every two minutes of its operation. All taken pictures were evaluated by sixteen judges (unrelated to the
project), yielding a total of 1,648 ratings which were determined to be sufficiently reliable by inter-rater agreement

measurements.

More than half of Luke’s pictures were rated by judges as being “good” or “very good” on a five-point Likert scale,
markedly exceeding the results reported by Byers et al| (2003) and Ahn et al. (2006). The statistical significance
of these results has been confirmed by both parametric (one-way ANOVA and pairwise Welch’s ¢-tests) and non-
parametric tests (Kruskal-Wallis and pair-wise Whittney U-tests) at p = .0001 significance level.

Based on these results, the project is considered to have achieved all proposed aims and satisfied all success criteria
set out in section .

The following final section of this thesis describes some limitations of the current approach, and proposes directions
for further autonomous robotic photographer research.

6.2 Current approach limitations and directions for future research

As discussed earlier, the proposed methods for human subject detection/tracking and obstacle detection/avoidance
were chosen due to their computational efficiency (enforced by the simplicity of the on-boards netbook) and
feasibility to be implemented within the project’s timeframe. While the proposed RGB-D data based methods

'The source code of the implemented robot photographer will be available after the submission of this thesis at
nttp://zabarauskas.com/robot-photographer.
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a) b) ©)

Figure 6.1: Potential application of Kinects infrared camera/projector pair for close obstacle detection. Image a) shows the
RGB input from Kinect’s colour camera, image b) shows the corresponding depth image, with missing depth data coloured in
purple, and image ¢) shows the Kinect’s infrared camera image of the same scene. Notice that while the depth data missing
due to nearby obstacles/out of range parts of the scene is indistinguishable in the depth image, the projected infrared stuctured

light pattern on the nearby obstacle is clearly visible in image ¢) (c.f- with the intensity of this pattern when projected on the
far wall).

were sufficiently effective to advance the current state-of-the-art in autonomous robotic photography, additional

improvements to these approaches could further enhance the performance of robot photographers.

In particular, improving human subject detection and tracking should directly lead to the enhancements in the

quality of taken pictures. This is because the photo composition approach described by IDixon et all (|2003|) directly

depends on the accuracy of human localization in the photographic camera’s image plane; indeed, the majority of
badly rated pictures in this thesis were aesthetically unpleasant because of incorrectly located human subject heads
in RGB-D image.

Regarding the obstacle detection and avoidance, most of the limitations in the described approach stem from
the hardware constraints of the Kinect sensor. For example, the visible depth range of the sensor is between
~0.7 m—4.0 m, which implies that any obstacles closer than 70 centimetres to the sensor cannot be detected. By
attaching Kinect towards the back of the robot’s base, the “blind” area in front of the robot can be reduced to around

40 centimetres.

While the presence of large obstacles in this area can be approximated from the loss of depth readings, this can
lead to false positive obstacle detections (which is not too severe for “random wandering” mode). However, small
obstacles cannot be detected even using these heuristics, and thus other sources of information, like bumper sensors,

have to be used.

Two potential approaches can be taken to mitigate this problem: the first approach would be to attach another
RGB-D sensor in front of the robot, facing downwards from around 70 centimetre height. This would not cause
any IR interference with the sensor used for human detection/tracking, and would eliminate any blind spots in
front of the robot. Of course, other inexpensive sensors (e.g. ultrasound) could also be used for this task.

Another, more interesting solution for obstacle detection in Kinects blind zone is to exploit the embedded IR

projection/capture technology that Kinect sensor uses to infer depths in the scene.

In particular, data loss in the depth image can occur due to objects being too far or too close to the sensor; these
cases are indistinguishable in the retrieved depth data. However, the structured light pattern emitted by Kinect’s
IR projector is clearly visible in the sensor’s IR camera image on the obstacles positioned closer than 70 centimetres
to the sensor, and, conversely, this light pattern has very low intensity when projected on objects further than
the far-range limit of the sensor (i.e. further than 4 metres), as shown in image p.1. Using image processing
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a) b) c)

Figure 6.2: Potential approach for infrared data combination with the depth data for obstacle avoidance. Image a) shows the
raw infrared input from Kinect’s IR camera, image b) shows this image after convolution with a Gaussian kernel, image c)
shows the result obtained after intensity thresholding and image d) shows the combined depth and processed IR images for
obstacle detection.

and/or machine learning techniques (with the basic example illustrated in figure @), this property could be used
to discriminate between these two cases.

Another significant hardware constraint of Kinect device is its limited vertical field-of-view (~45°). When the same
device is used both for obstacle and human subject detection, it imposes a difhicult trade-off between the closest
distance at which both the standing humans and the objects lying on the floor plane can be detected, as illustrated
in figure @ Possible solutions to this problem include mounting the Kinect sensor sideways (resulting in a vertical
~58° FOV, but limiting the number of people visible horizontally at the same time), or using an additional sensor
for obstacle detection, as described above.

Some further improvements of robot photographers could include proactive navigation planning. In particular, the
robot could attempt to actively predict the locations in the environment which could yield good quality pictures
based on last known positions of humans and try to navigate there. Similarly, landmark-tracking based localization
systems could be integrated into the architecture to ensure that the robot does not wander outside of the designed

photography area (basic implementations of both of these capabilities were described by lByers et all (|2003|))

Finally, a number of improvements to robot photographers could be made in human-robot interaction (HRI) area.

As described by lSmart et all (|2003|), an event photographer robot should be capable of bimodal interactions: in the

first mode (as presented in this thesis), an event photographer robot should remain relatively “inconspicuous” in
the environment and take candid pictures of the subjects. In the second mode, users could drive the interaction
with the robot by asking and giving instructions to the robot as to what pictures they would like to be taken. As a
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Figure 6.3: The shortest distances at which a 0.25 ¢m obstacle on the ground floor and the 1.8 m height human can be
detected, as a function of Kinect’s tilt angle (where the sensor parallel to the floor would have the tilt angle equal to zero,
tilted towards the ceiling would have a positive tilt angle, and tilted towards the floor would have the negative tilt angle).
These distances are presented for normal sensor’s orientation as mounted on Luke (yielding around ~45° vertical FOV) and
the possible sideways orientation (yielding ~58° vertical FOV).
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simple example, if humans wave towards a robot randomly wandering about, the robot should direct its attention to
them, approach the callers and take their picture. In more sophisticated versions of this reactive interaction mode,
the robot should estimate the subject’s intentions from more subtle cues, like the eye gaze, or speed/direction of

movement.

In fact, HRI research area is of special importance to autonomous robot photographers. As noted by Byers et al.
(2003), their applicability to this field stems from the fact that they perform a task which is 7) understandable
from the first glance, and i) has a natural application in environments filled with humans. This simplicity of their
functional purpose makes them approachable by people of various ages, education levels and general backgrounds,
and invokes a variety of natural human-robot interactions. Due to this richness of naturally occurring interactions
between them and humans, research into HRI aspects of autonomous robot photographers has potential to lead to
completely novel HRI results. As the autonomous robots are slowly but surely making their way into our everyday

lives (from vacuuming robots, to self-driving cars), this research is becoming more and more important.



Appendix A

A.1 Luke’s State Externalization Messages

This section provides an excerpt from the state externalization table that Luke uses to generate vocal and text
messages to communicate its state to humans, as discussed in section .

S locomotion Sbead tracking Sauton. phot. Sﬁaming MCSS&gC
PROCESSING_ X X X “Sorry!”
BUMPER_EVENT
“Apologies!”
“My bad, sorry!”
—PROCESSING_ ~ GATHERING_ X X “T’ll learn the room’s lighting conditions.”
BUMPER_EVENT  FACE_HUE_DATA
“T’ll look for the light sources in the room.”
—PROCESSING_ ~ —GATHERING_ AVOIDING_ X “T'll just look around for a few moments...”
BUMPER_EVENT = FACE_HUE_DATA  OBSTACLES
“T'll go and take some pictures from another an-
gle...”
“T'll take a small break for a few moments...”
—PROCESSING_  —GATHERING_ TAKING_ X “Smile, I'm taking a picture!”
BUMPER_EVENT  FACE_HUE_DATA  PICTURE
“Look at the camera, I'm taking a picture!”
“Look up, I'm taking the picture!”
“I'm taking the picture, say cheese!”
—PROCESSING_ ~ —GATHERING_ UPLOADING_ X “Thank you! I'm saving the picture now...”
BUMPER_EVENT  FACE_HUE_DATA  PICTURE
“Thanks, the photograph looks perfect! I'm sav-
ing it...”
“Thank you, that looks really good! Let me save
it...”
—PROCESSING_ ~ —GATHERING_ FRAMING_ FRAME _ “You're too far, 'm coming closer.”
BUMPER_EVENT  FACE_HUE_DATA  PICTURE TOO_SMALL
“Hold on, I'll come a bit closer.”
“You're too far. Hold on a second.”
“I need to come a bit closer...”
—PROCESSING_ ~ —~GATHERING_ FRAMING_ FRAME_OUT_  “The picture is off to one side... T'll try to center
BUMPER_EVENT  FACE_HUE_DATA  PICTURE OF_BOUNDS it!”
“I'm trying to get a better photo composition.
Hold on a second...”
“Let me take a look from a different angle...
Hold on.”
“Let me try to center the picture a bit...”
—PROCESSING_ ~ —GATHERING_ FRAMING_ NO_FRAME ~ “I cannot see anything interesting. I'll try from
BUMPER_EVENT ~ FACE_HUE_DATA  PICTURE over there...”

“I'm just looking for someone to photograph...”

Table A.1: An excerpt from Luke’s state externalization phrase book (X is a “do not care” symbol).
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A.2 Additional Examples of Discriminative Human/Face Detectors

This section describes a few additional examples of discriminative human/face detectors, based on the classifiers

and human/face feature descriptors discussed in sections B.1.1.3 and B.1.2.1.

Image intensities with quadratic kernel SVMs A face detection approach that directly uses image intensities as

input features has been proposed by psuna et all (|1997|). In their approach, 19 x 19 pixel size grayscale images are

classified using a SVM with a quadratic kernel (with the applied elliptical mask to ignore window boundaries).

This SVM is trained in a supervised fashion, using datasets of preprocessed face images (with image intensities
normalized using brightness correction and histogram equalization) and non-face images, bootstrapped from images
of landscapes, trees, buildings and so on. After the training, the obtained 2,500 support vectors are used for sliding-
window classification, over multiple scales of the input image.

PCA features with quadratic/Gaussian kernel SVMs IMunder and Gavri14 (IZOOd) use the PCA features for train-
ing binary human/non-human classifiers in the following way.

First they extract principal components from a training set containing 4,800 human images of 18 x 36-pixel
size. (The principal components with the associated largest eigenvalues are shown in figure @) Then they use a
supervised “human”/“non-human” training image set to train a set of quadratic/Gaussian kernel SVM discriminative
classifiers using the image representations in the reduced-dimensionality space as the feature vectors.

Figure A.1: Examples of principal components with the largest associated eigenvalues, obtained from a 4,800 human image

training set (sorted in the order of decreasing eigenvalues). Adapted from IMunder and Gavril4 (IZOOd)

Haar-like features with AdaBoost IViola et all (|2003|) describe a human detector which uses the AdaBoost ap-
proach to select and construct “strong” classifiers from the Haar-like features, which perform the best on the

“human”/“non-human” training set

Similarly to the approach described by |Viola and ]onesI (|2001

However, in this approach the Haar-like features are evaluated not on the input images directly, but on the spatially

), a cascade of these strong classifiers is assembled.

shifted frame difference images (assuming a static camera position), to capture some of the temporal properties of
human appearance.

LBP/HOG features with SVMs  An example of the combined LBP and HOG feature use in human/face detection
is presented by I\Wang et all (IZOO%) In their sliding-window approach, the presence/absence of humans in individual

windows is verified using a combination of three linear SVMs (full body, upper body and lower body), which are
trained based on LBP and HOG features.
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In Wang et al.’s system, the occlusion likelihood is also modelled by the responses of the full-body detection SVM
to individual blocks within the detector’s window: if these blocks are within SVM’s margin then the individual
upper-/lower-body SVM classifiers are invoked to verify the presence of humans in the window.

Another example of a sliding-window human detector using HOG features is provided by Maji et al| (2008). In
this approach, Maji et al{ describe an efficient way to train a SVM with an intersection kernel (K (z,y) =
>, min(hq(7), hy(i), where hq and hy are input histograms), using 1,360 HOG features.

HOD features with linear SVM  Choi et al. (2013) proposes an improvement to Spinello and Arras’s (2011) HOD-
based human detection approach (fully described in section E.I.Z.l), in which a graph-segmentation algorithm is

used to first segment the images into candidate regions based on the depth values and surface normals. After
rejecting image segments which are unlikely to contain humans (based on geometric heuristics), the remaining
regions are classified as human/non-human using a linear SVM with HOD descriptors.

The initial segmentation and region rejection steps allow Choi et al| to significantly improve the human detection
speed while achieving similar accuracy in comparison to Spinello and Arras.

A.3 Obstacle Detection and Avoidance Source Code

This section provides a source code example of a ROS obstacle avoidance node (rp_obstacle_avoidance) as described

in section .
@ and E below.

In particular, this node’s header, implementation and launch files are provided in listings @,

Listing A.1: Obstacle avoidance node’s (rp_obstacle_avoidance) header (/include/obstacle_avoidance.hpp).

/x%x

* @author Manfredas Zabarauskas <manfredas@zabarauskas.com>

* @date 27/08/2013 19:49:22

*

* @class RPObstacleAvoidanceNode

*

* @brief Robot photographer's obstacle avoidance ROS node, which uses point cloud and depth image
* inputs to detect obstacles in front of the robot, and generates the driving directions

* accordingly.

*/

#ifndef OBSTACLE_AVOIDANCE_HPP_
#define OBSTACLE_AVOIDANCE_HPP_

// STL includes
#include <deque>

// ROS includes

#include <ros/ros.h>

#include <sensor_msgs/PointCloud2.h>
#include <std_msgs/Float64.h>
#include <std_msgs/UInt8.h>

// PCL includes

#include <pcl/ros/conversions.h>
#include <pcl_ros/point_cloud.h>
#include <pcl/point_types.h>

// Boost includes
#include <boost/thread/mutex.hpp>
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// RPLocomotion includes

#include <driving_direction.h>

// Constants

#define DRIVING_DIRECTION_TOPIC "/rp/obstacle_avoidance/driving_direction”

#define SENSOR_TILT_ANGLE_TOPIC "/cur_tilt_angle”

#define SENSOR_POINT_CLOUD_TOPIC "/camera/depth_registered/points”

#define SENSOR_DEPTH_IMAGE_TOPIC "/camera/depth_registered/image"”

#define SENSOR_DISTANCE_FROM_GROUND 0.61f

// Overridable parameter defaults

#define FOCUS_FIELD_WIDTH_DEFAULT 0.4

#define FOCUS_FIELD_HEIGHT_DEFAULT 1.4

#define FOCUS_FIELD_DEPTH_DEFAULT 0.5

#define CLOUD_FILTER_SIZE_DEFAULT 0.03

#define MAX_INVALID_DEPTH_DATA_DEFAULT 0.4

#define SMOOTHING_FRAME_LIMIT_DEFAULT 2

#define VERBOSE_OUTPUT_ENABLED_DEFAULT false

class RPObstacleAvoidanceNode

{

private:

ros::NodeHandle& node; /*%< Node handle. */
DrivingDirection current_direction; /**x< Robot's current driving direction. */
std::deque<unsigned> point_counts_ahead; /**< History of points ahead of robot. */
float sensor_angle; /**< Sensor's angle. */
boost::mutex sensor_angle_mutex; /*%< Sensor's angle lock. */
ros::Publisher driving_direction_publisher; /*%< Driving direction publisher. */
double FOCUS_FIELD_WIDTH; /*x< ROI width overridable parameter (OP). x/
double FOCUS_FIELD_HEIGHT; /**x< ROI height OP. */
double FOCUS_FIELD_DEPTH; /*%*< ROI depth OP. */
double CLOUD_FILTER_SIZE; /**< Voxel filter grid size OP. */
double MAX_INVALID_DEPTH_DATA; /**x< Maximum allowed percentage OP. */
int SMOOTHING_FRAME_LIMIT; /**< Smoothing frame limit OP. */
bool VERBOSE_OUTPUT_ENABLED; /**x< Verbose output OP. */
VEXS

*
*
*
*

*

Vo

/*
*
*
*

*

Vo

* % X %X %

Reduces the number of points in the cloud using voxel grid filter.
@param cloud_to_filter Point cloud to be filtered.
@param filtered_cloud Resulting filtered point cloud.
@param voxel_size Voxel grid filter size.
/
id reducePointCloudDensity(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& cloud_to_filter
pcl::PointCloud<pcl::PointXYZ>::Ptr& filtered_cloud,
double voxel_size);

*
Levels the point cloud w.r.t. the ground (using Kinect's accelerometer).
@param cloud_to_level Point cloud to be levelled.
@param leveled_cloud Resulting levelled point cloud.
/
id levelPointCloud(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& cloud_to_level,
pcl::PointCloud<pcl::PointXYZ>::Ptr& levelled_cloud);

Reduces the point cloud to an area of interest (ROI) in which robot looks for obstacles.
@param cloud_to_crop Point cloud to be cropped.

@param cropped_cloud Resulting cropped point cloud.

@param x_limit_left X axis left crop limit.
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@param x_limit_right X axis right crop limit.
@param y_limit_above Y axis top crop limit.
@param y_limit_below Y axis bottom crop limit.
z
VA

* X %X %

axis front crop limit.
axis back crop limit.

@param z_limit_ahead
* @param z_limit_behind
*/

void cropPointCloud(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& cloud_to_crop,

pcl::PointCloud<pcl::PointXYZ>::Ptr& cropped_cloud,

double x_limit_left,

double x_limit_right,

double y_limit_above,

double y_limit_below,

double z_limit_ahead,

double z_limit_behind);

[ *x*

* Gets the proportion of invalid data (missing depth readings) in a given depth image.
* @param depth_image Input depth image.

* @returns Proportion of invalid data in the given depth image (between 0.0 and 1.0).
*/

double getInvalidDepthDataProportion(const sensor_msgs::Image::ConstPtr& depth_image);

VEXS
* Computes the driving direction from the levelled point cloud in front of the robot.
* @param frontal_point_cloud Levelled point cloud in front of the robot.
* @returns Computed driving direction.
*/
DrivingDirection drivingDirectionFromFrontalPointCloud/(
const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& frontal_point_cloud);

VEXS

* Publishes the given driving direction.

* @param driving_direction Driving direction to publish.

*/

void publishDrivingDirection(const DrivingDirection driving_direction);

/**

* Gets the overridable parameters from the parameter server.
x/

void getOverridableParameters();

/*x*
* Callback for the point cloud and depth image inputs from the Kinect.
* @param point_cloud Input point cloud from Kinect.
* @param depth_image Input depth image from Kinect.
*/
void kinectInputCallback(const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& point_cloud,
const sensor_msgs::Image::ConstPtr& depth_image);

/*x*

* Callback for the accelerometer’'s inputs from the Kinect.
* @param angle Kinect's tilt angle.

*/

void sensorAngleCallback(const std_msgs::Float64& angle);

public:
VEXS
* Default obstacle avoidance node's constructor.
* @param node Handle to ROS node.
*/
RPObstacleAvoidanceNode (ros::NodeHandle& node);
H

#endif /* OBSTACLE_AVOIDANCE_HPP_ =/
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Listing A.2: Obstacle avoidance node’s (rp_obstacle_avoidance) implementation (/src/obstacle_avoidance.cpp).

VEES

* @author Manfredas Zabarauskas <manfredas@zabarauskas.com>
* @date 27/08/2013 19:49:22

*/

#include <obstacle_avoidance.hpp>

// STL includes
#include <iostream>
#include <cmath>

// ROS includes

#include <message_filters/subscriber.h>

#include <message_filters/synchronizer.h>

#include <message_filters/sync_policies/approximate_time.h>
#include <sensor_msgs/Image.h>

// PCL includes

#include <pcl/ros/conversions.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/common/transforms.h>

// Macro to check whether a given raw depth value is invalid (Kinect/GFreenect specific)

#define INVALID_DEPTH_VALUE (ITERATOR) ((*((ITERATOR) + @) == 0) && \
(*((ITERATOR) + 1) == 0) && \
(*((ITERATOR) + 2) == 192) && \
(x((ITERATOR) + 3) == 127))

int main(int argc, charx* argv)

{
// Initialize ROS
ros::init(argc, argv, "rp_obstacle_avoidance");
// Get the handle to the ROS node
ros::NodeHandle node;
// Start the worker node
RPObstacleAvoidanceNode worker_node (node);

}

RPObstacleAvoidanceNode:: RPObstacleAvoidanceNode (ros::NodeHandle& node)
node (node),
sensor_angle (0.0f),
current_direction(STOP),

// Initialize overridable parameters
FOCUS_FIELD_WIDTH(FOCUS_FIELD_WIDTH_DEFAULT),
FOCUS_FIELD_HEIGHT (FOCUS_FIELD_HEIGHT_DEFAULT),
FOCUS_FIELD_DEPTH(FOCUS_FIELD_DEPTH_DEFAULT),
CLOUD_FILTER_SIZE (CLOUD_FILTER_SIZE_DEFAULT),
MAX_INVALID_DEPTH_DATA (MAX_INVALID_DEPTH_DATA_DEFAULT),
SMOOTHING_FRAME_LIMIT (SMOOTHING_FRAME_LIMIT_DEFAULT),
VERBOSE_OUTPUT_ENABLED (VERBOSE_OUTPUT_ENABLED_DEFAULT)

// Get parameters from the parameter server
getOverridableParameters();

// Initialize ROS publisher for the driving direction
const int DRIVING_DIRECTION_BUFFER_SIZE = 1;
driving_direction_publisher = node.advertise<std_msgs::UInt8>(
DRIVING_DIRECTION_TOPIC,
DRIVING_DIRECTION_BUFFER_SIZE
)
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// Initialize ROS subscriber for the Kinect sensor angle

const int SENSOR_TILT_ANGLE_BUFFER_SIZE = 1;

node . subscribe (SENSOR_TILT_ANGLE_TOPIC,
SENSOR_TILT_ANGLE_BUFFER_SIZE,
&RPObstacleAvoidanceNode:: sensorAngleCallback,
this);

// Initialize synchronized ROS subscribers for the Kinect's point cloud input and depth images
const int SYNCHRONIZED_SUBSCRIBERS_BUFFER_SIZE = 5;
message_filters::Subscriber<pcl::PointCloud<pcl::PointXYZ> > point_cloud_subscriber(

node,

SENSOR_POINT_CLOUD_TOPIC,

SYNCHRONIZED_SUBSCRIBERS_BUFFER_SIZE
DE

message_filters::Subscriber<sensor_msgs::Image> depth_data_subscriber(
node,
SENSOR_DEPTH_IMAGE_TOPIC,
SYNCHRONIZED_SUBSCRIBERS_BUFFER_SIZE

)5

// Create a synchronized subscriber for Kinect's point cloud and depth image inputs

typedef message_filters::sync_policies::ApproximateTime<
pcl::PointCloud<pcl::PointXYZ>, sensor_msgs::Image

> SynchronizationPolicy;

const int SYNCHRONIZATION_WINDOW_SIZE = 10;

message_filters::Synchronizer<SynchronizationPolicy> synchronized_subscriber(
SynchronizationPolicy (SYNCHRONIZATION_WINDOW_SIZE),
point_cloud_subscriber,
depth_data_subscriber

)

// Register the callback for the synchronized subscriber
synchronized_subscriber.registerCallback(
boost::bind (&RPObstacleAvoidanceNode::kinectInputCallback, this, _1, _2)

)5

// Spin the node at 5 Hz
ros::Rate rate(5);
while (ros::ok())
{
ros::spinOnce();
rate.sleep();
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void RPObstacleAvoidanceNode::kinectInputCallback(
const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& point_cloud,
const sensor_msgs::Image::ConstPtr& depth_image)

// Check the proportion of valid depth readings; if the depth image is nearly empty, we must
// be standing in front of a large object.
DrivingDirection proposed_direction;
if (getInvalidDepthDataProportion(depth_image) > MAX_INVALID_DEPTH_DATA)
{
proposed_direction = (current_direction != FORWARD) ? current_direction : RIGHT;
3
else
{
// Create an empty point cloud
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);

// Reduce the point cloud density
reducePointCloudDensity(point_cloud, cloud_filtered, CLOUD_FILTER_SIZE);
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// Level it to be parallel to the ground
levelPointCloud(cloud_filtered, cloud_filtered);

// Crop it to the area in front of the robot
cropPointCloud(cloud_filtered,
cloud_filtered,
-FOCUS_FIELD_WIDTH / 2,
FOCUS_FIELD_WIDTH / 2,
-FOCUS_FIELD_HEIGHT,
0.0,
FOCUS_FIELD_DEPTH,
0.0);

// Get the driving direction from the contents of the point cloud ahead of the robot
proposed_direction = drivingDirectionFromFrontalPointCloud(cloud_filtered);

// Take care to ensure that the current turn direction is maintained (to avoid oscillation)
if (current_direction == FORWARD || proposed_direction == FORWARD)
{
if (proposed_direction != current_direction)
{
publishDrivingDirection(proposed_direction);
current_direction = proposed_direction;

// Produce output if necessary
if (VERBOSE_OUTPUT_ENABLED)
{
ROS_INFO("Current direction: %s”, ((current_direction == FORWARD) ? "FORWARD"
(current_direction == LEFT) ? "LEFT" : "RIGHT"));

}
void RPObstacleAvoidanceNode::levelPointCloud(

const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& cloud_to_level,
pcl::PointCloud<pcl::PointXYZ>::Ptr& levelled_cloud)

{
// Get the last known sensor's tilt angle
float angle_rad;
sensor_angle_mutex.lock();
{
angle_rad = M_PI * sensor_angle / 180.0f;
}
sensor_angle_mutex.unlock();
// Create the appropriate rotation matrix
Eigen::Matrix4f rotation_matrix;
rotation_matrix <<
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, cos(angle_rad), -sin(angle_rad), -SENSOR_DISTANCE_FROM_GROUND,
0.0f, sin(angle_rad), cos(angle_rad), 0.0of,
0.0f, 0.0f, 0.0f, 1.0f;
// Rotate back the point cloud according to input from Kinect's accelerometer
pcl::transformPointCloud(xcloud_to_level, xlevelled_cloud, rotation_matrix);
}

DrivingDirection RPObstacleAvoidanceNode::drivingDirectionFromFrontalPointCloud(
const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& frontal_point_cloud)

// Do not use smoothing while turning
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if (current_direction != FORWARD)
{

point_counts_ahead.clear();

// Add the sample of the number of points ahead, capping the sample count
point_counts_ahead.push_front(frontal_point_cloud->size());
while (point_counts_ahead.size() > SMOOTHING_FRAME_LIMIT)
{
point_counts_ahead.pop_back();

// Get the smoothed number of points ahead
int smoothed_point_count_ahead = 0;
for (unsigned i = 0; i < point_counts_ahead.size(); i++)

{

smoothed_point_count_ahead += point_counts_ahead[i];
}
smoothed_point_count_ahead /= point_counts_ahead.size();
if (smoothed_point_count_ahead == 0)
{

// Coast is clear
return FORWARD;

3
else
{
// Find out on which side of the robot (left/right) lies the centroid of an obstacle
// turn in the opposite direction,
float centroid_x = 0.0f;
for (unsigned i = 0; i < frontal_point_cloud->size(); i++)
{
centroid_x += frontal_point_cloud->points[i].x;
}
centroid_x /= frontal_point_cloud->size();
return (centroid_x < ©.0) ? RIGHT : LEFT;
3

void RPObstacleAvoidanceNode::reducePointCloudDensity (
const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& cloud_to_filter,
pcl::PointCloud<pcl::PointXYZ>::Ptr& filtered_cloud,
double voxel_size)

// Create the appropriate voxel grid filter
pcl::VoxelGrid<pcl::PointXYZ> voxel_size_filter;
voxel_size_filter.setInputCloud(cloud_to_filter);
voxel_size_filter.setLeafSize(voxel_size, voxel_size, voxel_size);

// Subsample the input point cloud
voxel_size_filter.filter(xfiltered_cloud);
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void RPObstacleAvoidanceNode::cropPointCloud (
const pcl::PointCloud<pcl::PointXYZ>::ConstPtr& cloud_to_crop,
pcl::PointCloud<pcl::PointXYZ>::Ptr& cropped_cloud,
double x_limit_left,
double x_limit_right,
double y_limit_above,
double y_limit_below,
double z_limit_ahead,
double z_limit_behind)

and
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// Create the appropriate pass-through filter
pcl::PassThrough<pcl::PointXYZ> pass_through_filter;
pass_through_filter.setInputCloud(cloud_to_crop);

// Crop horizontally

pass_through_filter.setFilterFieldName("x");
pass_through_filter.setFilterLimits(x_limit_left, x_limit_right);
pass_through_filter.filter (xcropped_cloud);

// Crop vertically

pass_through_filter.setFilterFieldName("y");
pass_through_filter.setFilterLimits(y_limit_above, y_limit_below);
pass_through_filter.filter (xcropped_cloud);

// Crop depth-wise
pass_through_filter.setFilterFieldName("z");
pass_through_filter.setFilterLimits(z_limit_behind, z_limit_ahead);
pass_through_filter.filter (xcropped_cloud);

K

double RPObstacleAvoidanceNode::getInvalidDepthDataProportion(
const sensor_msgs::Image::ConstPtr& depth_image)

{
int invalid_depth_pixels = 0;
// Count the invalid depth pixels directly in raw depth data (in 32FCl1 encoding)
for (std::vector<unsigned char>::const_iterator iterator = depth_image->data.begin(),
iterator_end = depth_image->data.end();
iterator != iterator_end;
std::advance(iterator, 4))
{
invalid_depth_pixels += INVALID_DEPTH_VALUE (iterator);
}
return 4.0 * (double)invalid_depth_pixels / (double)depth_image->data.size();
}

APPENDIX 4

void RPObstacleAvoidanceNode::publishDrivingDirection(const DrivingDirection driving_direction)

{
// Convert and publish the direction
std_msgs::UInt8 converted_direction;
converted_direction.data = drivingDirectionToUint8(driving_direction);
driving_direction_publisher.publish(converted_direction);
}

void RPObstacleAvoidanceNode::sensorAngleCallback(const std_msgs::Float64& angle)
{

// Save sensor's angle

sensor_angle_mutex.lock();

{

sensor_angle = angle.data;

}

sensor_angle_mutex.unlock();

void RPObstacleAvoidanceNode::getOverridableParameters()

{
// Get overridable parameters from the parameter server
node.getParamCached("/rp/obstacle_avoidance_node/focus_field_width", FOCUS_FIELD_
node.getParamCached("/rp/obstacle_avoidance_node/focus_field_height”, FOCUS_FIELD_

node.getParamCached("/rp/obstacle_avoidance_node/focus_field_depth”, FOCUS_FIELD_

WIDTH);
HEIGHT);
DEPTH);
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node.getParamCached("/rp/obstacle_avoidance_node/cloud_filter_size", CLOUD_FILTER_SIZE);

node.getParamCached("/rp/obstacle_avoidance_node/smoothing_frame_limit"”, SMOOTHING_FRAME_LMT);
node.getParamCached("/rp/obstacle_avoidance_node/max_invalid_depth_data",MAX_NVLD_DEPTH_DATA);
node.getParamCached("/rp/obstacle_avoidance_node/verbose_output_enabled"”,VERBOSE_OUT_ENABLED);
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Listing A.3: Obstacle avoidance node’s (rp_obstacle_avoidance) launch file (/1aunch/obstacle_avoidance. launch).

<launch>

<node name="kinect_aux_node” pkg="kinect_aux" type="kinect_aux_node"/>
<node ns="rp"” name="obstacle_avoidance_node"” pkg="rp_obstacle_avoidance”

type="rp_obstacle_avoidance_node">

<!-- Node enabled flag -->
<param name="enabled" value="true" type="bool"/>

<!-- Verbose output enabled flag -->
<param name="verbose_output_enabled” value="false” type="bool"/>

<!-- ROI width (meters) -->
<param name="focus_field_width"” value="0.45" type="double”"/>

<!-- ROI height (meters) -->
<param name="focus_field_height” value="1.4" type="double”/>

<!-- ROI depth (meters) -->
<param name="focus_field_depth” value="0.7" type="double"”/>

<!-- Voxel filter grid size (meters) -->
<param name="cloud_filter_size"” value="0.05" type="double"/>

<!-- Smoothing frame limit (increases resistance to noise, but decreases responsiveness) -->

<param name="smoothing_frame_limit"” value="3" type="int"/>

<!-- Maximum allowed percentage of invalid depth data in the depth
<param name="max_invalid_depth_data"” value="0.4" type="double"/>
</node>
</launch>

image -->
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